A New Exact Penalty Function Method for Continuous Inequality Constrained Optimization Problems∗
نویسندگان
چکیده
In this paper, a computational approach based on a new exact penalty function method is devised for solving a class of continuous inequality constrained optimization problems. The continuous inequality constraints are first approximated by smooth function in integral form. Then, we construct a new exact penalty function, where the summation of all these approximate smooth functions in integral form, called the constraint violation, is appended to the objective function. In this way, we obtain a sequence of approximate unconstrained optimization problems. It is shown that if the value of the penalty parameter is sufficiently large, then any local minimizer of the corresponding unconstrained optimization problem is a local minimizer of the original problem. For illustration, three examples are solved using the proposed method. From the solutions obtained, we observe that the values of their objective functions are amongst the smallest when compared with those obtained by other existing methods available in the literature. More importantly, our method finds solution which satisfies the continuous inequality constraints.
منابع مشابه
An Exact Penalty Function Method for Continuous Inequality Constrained Optimal Control Problem
In this paper, we consider a class of optimal control problems subject to equality terminal state constraints and continuous state and control inequality constraints. By using the control parametrization technique and a time scaling transformation, the constrained optimal control problem is approximated by a sequence of optimal parameter selection problems with equality terminal state constrain...
متن کاملThe Exact l 1 Penalty Function Method for Constrained Nonsmooth Invex Optimization Problems
The exactness of the penalization for the exact l1 penalty function method used for solving nonsmooth constrained optimization problems with both inequality and equality constraints are presented. Thus, the equivalence between the sets of optimal solutions in the nonsmooth constrained optimization problem and its associated penalized optimization problem with the exact l1 penalty function is es...
متن کاملA Hybrid Method Combining Genetic Algorithm and Hooke-jeeves Method for Constrained Global Optimization
A new global optimization method combining genetic algorithm and Hooke-Jeeves method to solve a class of constrained optimization problems is studied in this paper. We first introduce the quadratic penalty function method and the exact penalty function method to transform the original constrained optimization problem with general equality and inequality constraints into a sequence of optimizati...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کامل