On Flare-CME Characteristics from Sun to Earth Combining Remote-Sensing Image Data with In Situ Measurements Supported by Modeling
نویسندگان
چکیده
We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects - from Sun to Earth - to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-based instruments. We also track the CME signature off-limb with combined extreme ultraviolet (EUV) and white-light data from the Solar Terrestrial Relations Observatory (STEREO). By applying the graduated cylindrical shell (GCS) reconstruction method and total mass to stereoscopic STEREO-SOHO (Solar and Heliospheric Observatory) coronagraph data, we track the temporal and spatial evolution of the CME in the interplanetary space and derive its geometry and 3D mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the magnetic cloud (MC) from in situ measurements from Wind. This is compared to nonlinear force-free (NLFF) model results, as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are lower in the interplanetary space by ∼ 50% and 75%, respectively, possibly indicating an erosion process. A CME mass increase of 10% is observed over a range of [Formula: see text]. The temporal evolution of the CME-associated core-dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.
منابع مشابه
Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملTracking the momentum flux of a CME and quantifying its influence on geomagnetically induced currents at Earth
[1] We investigate a coronal mass ejection (CME) propagating toward Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboa...
متن کاملExploring Gördes Zeolite Sites by Feature Oriented Principle Component Analysis of LANDSAT Images
Recent studies showed that remote sensing (RS) is an effective, efficient and reliable technique used in almost all the areas of earth sciences. Remote sensing as being a technique started with aerial photographs and then developed employing the multi-spectral satellite images. Nowadays, it benefits from hyper-spectral, RADAR and LIDAR data as well. This potential has widen its applicability in...
متن کاملRemote Sensing of Tidal Situation by Monitoring Changes in Suspended Sediment Concentration in Surface Waters
Collecting information on suspended sediments concentration (SSC) in coastal waters and estuaries is vital for proper management of coastal environments. Traditionally, SSC used to be measured by time consuming and costly point measurements. This method allows the accurate measurement of SSC only for a point in space and time. Remote sensing from air-borne and space-borne sensors have proved to...
متن کاملRemote sensing technology for mapping and monitoring vegetation cover (Case study: Semirom-Isfahan, Iran)
To determine the suitable indices for vegetation cover and production assessment based on the remote sensing data, simultaneous digital data with field data belonging to the spring rangeland of the Semirom-Isfahan province were analyzed. During two years of monitoring the annual, grass, forb, and shrub vegetation cover and the total production data from 86 were collected. The Global Positioning...
متن کامل