The Last Descent In Samples Of Geometric Random Variables And Permutations

نویسندگان

  • Arnold Knopfmacher
  • Helmut Prodinger
چکیده

• Skip lists are an alternative to tries and digital search trees. For each data, a geometric random variable defines the number of pointers that it contributes to the data structure. (The data structure is non-deterministic and is randomly constructed using a geometric random variable.) These pointers are then connected in a specific way that makes access to the data manageable. The analysis leads to parameters that are related to left-to-right maxima.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moments of an exponential functional of random walks and permutations with given descent sets

The exponential functional of simple, symmetric random walks with negative drift is an infinite polynomial Y = 1+ ξ1 + ξ1ξ2 + ξ1ξ2ξ3 + · · · of independent and identically distributed non-negative random variables. It has moments that are rational functions of the variables μk = E(ξ ) < 1 with universal coefficients. It turns out that such a coefficient is equal to the number of permutations wi...

متن کامل

Descent variation of samples of geometric random variables

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

A Combinatorial and Probabilistic Study of Initial and End Heights of Descents in Samples of Geometrically Distributed Random Variables and in Permutations

LetX be a random variable (RV), distributed according to the geometric distribution with parameter p (geom(p)): P(X = k) = pq, with q = 1 − p. We consider a sequence X1X2 . . . Xn of independent RVs. We also speak about words a1 . . . an; there is some interest of combinatorial parameters of such words, generated by independent geometric random variables. In this paper we continue the study of ...

متن کامل

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Equidistribution and Sign-Balance on 321-Avoiding Permutations

Let Tn be the set of 321-avoiding permutations of order n. Two properties of Tn are proved: (1) The last descent and last index minus one statistics are equidistributed over Tn, and also over subsets of permutations whose inverse has an (almost) prescribed descent set. An analogous result holds for Dyck paths. (2) The sign-and-last-descent enumerators for T2n and T2n+1 are essentially equal to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2006