Application of pattern recognition techniques for classification of pediatric brain tumors by in vivo 3T 1H‐MR spectroscopy—A multi‐center study
نویسندگان
چکیده
PURPOSE 3T magnetic resonance scanners have boosted clinical application of 1 H-MR spectroscopy (MRS) by offering an improved signal-to-noise ratio and increased spectral resolution, thereby identifying more metabolites and extending the range of metabolic information. Spectroscopic data from clinical 1.5T MR scanners has been shown to discriminate between pediatric brain tumors by applying machine learning techniques to further aid diagnosis. The purpose of this multi-center study was to investigate the discriminative potential of metabolite profiles obtained from 3T scanners in classifying pediatric brain tumors. METHODS A total of 41 pediatric patients with brain tumors (17 medulloblastomas, 20 pilocytic astrocytomas, and 4 ependymomas) were scanned across four different hospitals. Raw spectroscopy data were processed using TARQUIN. Borderline synthetic minority oversampling technique was used to correct for the data skewness. Different classifiers were trained using linear discriminative analysis, support vector machine, and random forest techniques. RESULTS Support vector machine had the highest balanced accuracy for discriminating the three tumor types. The balanced accuracy achieved was higher than the balanced accuracy previously reported for similar multi-center dataset from 1.5T magnets with echo time 20 to 32 ms alone. CONCLUSION This study showed that 3T MRS can detect key differences in metabolite profiles for the main types of childhood tumors. Magn Reson Med 79:2359-2366, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
منابع مشابه
Assessment of Malignancy in Brain Tumors by 3T MR Spectroscopy
To assess clinical proton MRS as a noninvasive method for evaluating brain tumor malignancy at 3T high field system. Using 3T MRI/MRS system, localized water-suppressed single-voxel technique was employed to evaluate spectra with peaks of NAA, choline (Cho), creatine (Cr) and lactate. NAA/Cr ratio of all tumor tissues was significantly lower than that of the normal tissues (p=0.005), but Cho/Cr...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملDifferentiation of active tumor from edematous regions of glioblastoma multiform tumor in diffusion MR images using heterogeneity analysis method
Background: Due to intrinsic heterogeneity of cellular distribution and density within diffusion weighted images (DWI) of glioblastoma multiform (GBM) tumors, differentiation of active tumor and peri-tumoral edema regions within these tumors is challenging. The aim of this paper was to take advantage of the differences among heterogeneity of active tumor and edematous regions within the gliobla...
متن کاملDetection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine
Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...
متن کاملOptimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions
Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Meth...
متن کامل