Immobilization of LccC Laccase from Aspergillus nidulans on Hard Surfaces via Fungal Hydrophobins.

نویسندگان

  • Oleksandra Fokina
  • Alex Fenchel
  • Lex Winandy
  • Reinhard Fischer
چکیده

Fungal hydrophobins are small amphiphilic proteins that can be used for coatings on hydrophilic and hydrophobic surfaces. Through the formation of monolayers, they change the hydrophobicity of a given surface. Especially, the class I hydrophobins are interesting for biotechnology, because their layers are stable at high temperatures and can only be removed with strong solvents. These proteins self-assemble into monolayers under physiological conditions and undergo conformational changes that stabilize the layer structure. Several studies have demonstrated how the fusion of hydrophobins with short peptides allows the specific modification of the properties of a given surface or have increased the protein production levels through controlled localization of hydrophobin molecules inside the cell. Here, we fused the Aspergillus nidulans laccase LccC to the class I hydrophobins DewA and DewB and used the fusion proteins to functionalize surfaces with immobilized enzymes. In contrast to previous studies with enzymes fused to class II hydrophobins, the DewA-LccC fusion protein is secreted into the culture medium. The crude culture supernatant was directly used for coatings of glass and polystyrene without additional purification steps. The highest laccase surface activity was achieved after protein immobilization on modified hydrophilic polystyrene at pH 7. This study presents an easy-to-use alternative to classical enzyme immobilization techniques and can be applied not only for laccases but also for other biotechnologically relevant enzymes. IMPORTANCE Although fusion with small peptides to modify hydrophobin properties has already been performed in several studies, fusion with an enzyme presents a more challenging task. Both protein partners need to remain in active form so that the hydrophobins can interact with one another and form layers, and so the enzyme (e.g., laccase) will remain active at the same time. Also, because of the amphiphilic nature of hydrophobins, their production and purification remain challenging so far and often include steps that would irreversibly disrupt most enzymes. In our study, we present the first functional fusion proteins of class I hydrophobins from A. nidulans with a laccase. The resulting fusion enzyme is directly secreted into the culture medium by the fungus and can be used for the functionalization of hard surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose

BACKGROUND Sugarcane is one of the world's most profitable crops. Waste steam-exploded sugarcane bagasse (SEB) is a cheap, abundant, and renewable lignocellulosic feedstock for the next-generation biofuels. In nature, fungi seldom exist as planktonic cells, similar to those found in the nutrient-rich environment created within an industrial fermenter. Instead, fungi predominantly form biofilms ...

متن کامل

Six Hydrophobins Are Involved in Hydrophobin Rodlet Formation in Aspergillus nidulans and Contribute to Hydrophobicity of the Spore Surface

Hydrophobins are amphiphilic proteins able to self-assemble at water-air interphases and are only found in filamentous fungi. In Aspergillus nidulans two hydrophobins, RodA and DewA, have been characterized, which both localize on the conidiospore surface and contribute to its hydrophobicity. RodA is the constituent protein of very regularly arranged rodlets, 10 nm in diameter. Here we analyzed...

متن کامل

Engineering hydrophobin DewA to generate surfaces that enhance adhesion of human but not bacterial cells.

Hydrophobins are fungal proteins with the ability to form immunologically inert membranes of high stability, properties that makes them attractive candidates for orthopaedic implant coatings. Cell adhesion on the surface of such implants is necessary for better integration with the neighbouring tissue; however, hydrophobin surfaces do not mediate cell adhesion. The aim of this project was there...

متن کامل

Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns.

Analysis of genomic clones encoding a putative laccase in homokaryon strains of Ceriporiopsis subvermispora led to the identification of an allelic variant of the previously described lcs-1 gene. A cDNA clone corresponding to this gene was expressed in Aspergillus nidulans and in Aspergillus niger. Enzyme assays and Western blots showed that both hosts secreted active laccase. Relative to the i...

متن کامل

Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins.

The functional relationship between fungal hydrophobins was studied by complementation analysis of an mpg1(-) gene disruption mutant in Magnaporthe grisea. MPG1 encodes a hydrophobin required for full pathogenicity of the fungus, efficient elaboration of its infection structures and conidial rodlet protein production. Seven heterologous hydrophobin genes were selected which play distinct roles ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 82 21  شماره 

صفحات  -

تاریخ انتشار 2016