A Framework for Evolving Fuzzy Classifier Systems Using Genetic Programming

نویسندگان

  • Brian Carse
  • Anthony G. Pipe
چکیده

A fuzzy classifier system framework is proposed which employs a tree-based representation for fuzzy rule (classifier) antecedents and genetic programming for fuzzy rule discovery. Such a rule representation is employed because of the expressive power and generality it endows to individual rules. The framework proposes accuracy-based fitness for individual fuzzy classifiers and employs evolutionary competition between simultaneously matched classifiers. The evolutionary algorithm (GP) is therefore searching for compact fuzzy rule bases which are simultaneously general, accurate and co-adapted. Additional extensions to the proposed framework are suggested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetics-Based Machine Learning

This is a survey of the field of Genetics-based Machine Learning (GBML): the application of evolutionary algorithms to machine learning. We assume readers are familiar with evolutionary algorithms and their application to optimisation problems, but not necessarily with machine learning. We briefly outline the scope of machine learning, introduce the more specific area of supervised learning, co...

متن کامل

Evolving Takagi-Sugeno-Kang Fuzzy Systems using Multi Population Grammar-Guided Genetic Programming

This work proposes a novel approach for the automatic generation and tuning of complete Takagi-SugenoKang fuzzy rule based systems. The examined system aims to explore the effects of a reduced search space for a genetic programming framework by means of grammar guidance that describes candidate structures of fuzzy rule based systems. The presented approach applies context-free grammars to gener...

متن کامل

A Framework for Evolving Fuzzy Rule Classifiers

This paper presents a framework for genetic fuzzy rule based classifier. First, a classification problem is divided into several two-class problems following a fuzzy class binarization scheme; next, a fuzzy rule is evolved for each two-class problem using a Michigan iterative learning approach; finally, the evolved fuzzy rules are integrated using the fuzzy class binarization scheme. In particu...

متن کامل

Evolving Fuzzy Neural Networks: Theory and Applications for On-line Adaptive Prediction, Decision Making and Control

The paper introduces one paradigm of neuro-fuzzy techniques and an approach to building on-line, adaptive intelligent systems. This approach is called evolving connectionist systems (ECOS). ECOS evolve through incremental, on-line learning, both supervised and unsupervised. They can accommodate new input data, including new features, new classes, etc. New connections and new neurons are created...

متن کامل

Evolving Complex Fuzzy Classifier Rules Using a Linear Tree Genetic Representation

The paper proposes a linear representation of tree structures in order to evolve complex fuzzy rule sets for solving classification problems. In particular, linguistic rules are evolved, where the condition part of a rule can have an arbitrary structure of conjunctions and disjunctions. We describe an efficient rule representation scheme, which uses a genetic algorithm. The method is tested wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001