Subword complexes, cluster complexes, and generalized multi-associahedra
نویسندگان
چکیده
In this paper, we use subword complexes to provide a uniform approach to finite-type cluster complexes and multi-associahedra. We introduce, for any finite Coxeter group and any nonnegative integer k, a spherical subword complex called multi-cluster complex. For k = 1, we show that this subword complex is isomorphic to the cluster complex of the given type. We show that multi-cluster complexes of types A and B coincide with known simplicial complexes, namely with the simplicial complexes of multi-triangulations and centrally symmetric multi-triangulations, respectively. Furthermore, we show that the multi-cluster complex is universal in the sense that every spherical subword complex can be realized as a link of a face of the multi-cluster complex.
منابع مشابه
Brick Polytopes of Spherical Subword Complexes and Generalized Associahedra
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کاملBrick Polytopes of Spherical Subword Complexes: a New Approach to Generalized Associahedra
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کاملGeneralized associahedra via brick polytopes
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کاملFan Realizations for Some 2-associahedra
A k-associahedron is a simplicial complex whose facets, called ktriangulations, are the inclusion maximal sets of diagonals of a convex polygon where no k + 1 diagonals mutually cross. Such complexes are conjectured for about a decade to have realizations as convex polytopes, and therefore as complete simplicial fans. Apart from four one-parameter families including simplices, cyclic polytopes ...
متن کاملMulti - cluster complexes
We present a family of simplicial complexes called multi-cluster complexes. These complexes generalize the concept of cluster complexes, and extend the notion of multi-associahedra of types A and B to general finite Coxeter groups. We study combinatorial and geometric properties of these objects and, in particular, provide a simple combinatorial description of the compatibility relation among t...
متن کامل