Locally Linear Embedded Eigenspace Analysis

نویسنده

  • Thomas S. Huang
چکیده

The existing nonlinear local methods for dimensionality reduction yield impressive results in data embedding and manifold visualization. However, they also open up the problem of how to define a unified projection from new data to the embedded subspace constructed by the training samples. Thinking globally and fitting locally, we present a new linear embedding approach, called Locally Embedded Analysis (LEA), for dimensionality reduction and feature selection. LEA can be viewed as the linear approximation of the Locally Linear Embedding (LLE). By solving a linear eigenspace problem in closed-form, LEA automatically learns the local neighborhood characteristic and discovers the compact linear subspace, which optimally preserves the intrinsic manifold structure. Given a new highdimensional data point, LEA finds the corresponding low-dimensional point in the subspace via the linear projection. This embedding process concentrates the adjacent data points into the same dense cluster, which is effective for discriminant analysis, supervised classification and unsupervised clustering. We test the proposed LEA algorithm on several benchmark databases. Experimental results show that LEA provides better data representation and more efficient dimensionality reduction than the classical linear methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient eigenspace updating scheme for high-dimensional systems

Systems based on principal component analysis have developed from exploratory data analysis in the past to current data processing applications which encode and decode vectors of data using a changing projection space (eigenspace). Linear systems, which need to be solved to obtain a constantly updated eigenspace, have increased significantly in their dimensions during this evolution. The basic ...

متن کامل

Nonlinear Dimensionality Reduction Techniques and Their Applications

Dimensionality reduction is the search for a small set of variables to describe a large set of observed dimensions. Some benefits of dimensionality reduction include data visualization, compact representation, and decreased processing time. In this paper, we review two nonlinear techniques for dimensionality reduction: Isometric Feature Mapping (Isomap) and Locally Linear Embedding (LLE), and a...

متن کامل

Chunk Incremental LDA Computing on Data Streams

This paper presents a constructive method for deriving an updated discriminant eigenspace for classification, when bursts of new classes of data is being added to an initial discriminant eigenspace in the form of random chunks. The proposed Chunk incremental linear discriminant analysis (I-LDA) can effectively evolve a discriminant eigenspace over a fast and large data stream, and extract featu...

متن کامل

Lattice differential equations embedded into reaction-diffusion systems

We show that lattice dynamical systems naturally arise on infinite-dimensional invariant manifolds of reaction-diffusion equations with spatially periodic diffusive fluxes. The result connects wave pinning phenomena in lattice differential equations and in reaction-diffusion equations in inhomogeneous media. The proof is based on a careful singular perturbation analysis of the linear part, wher...

متن کامل

An Eigenspace Update Algorithm for Image Analysis

During the past few years several interesting applications of eigenspace representation of images have been proposed. These include face recognition, video coding, and pose estimation. However, the vision research community has largely overlooked parallel developments in signal processing and numerical linear algebra concerning efficient eigenspace updating algorithms. These new developments ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005