On a new reformulation of Hadwiger's conjecture

نویسندگان

  • Reza Naserasr
  • Yared Nigussie
چکیده

Assuming that every proper minor closed class of graphs contains a maximum with respect to the homomorphism order, we prove that such a maximum must be homomorphically equivalent to a complete graph. This proves that Hadwiger’s conjecture is equivalent to saying that every minor closed class of graphs contains a maximum with respect to homomorphism order. Let F be a finite set of 2-connected graphs, and let C be the class of graphs with no minor from F . We prove that if C has a maximum, then any maximum of C must be homomorphically equivalent to a complete graph. This is a special case of a conjecture of J. Nešetřil and P. Ossona de Mendez.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connected matchings and Hadwiger's conjecture

Conjecture 0.3 has a fairly interesting reformulation with some ”Ramsey flavor”. A set of pairwise disjoint edges e1, e2, . . . , et of G is called a connected matching of size t ([8]) if for every 1 ≤ i < j ≤ t there exists at least one edge of G connecting an endpoint of ei to an endpoint of ej . Alfréd Rényi Institute, Hungarian Academy of Sciences, Budapest 1364, P. O. Box 127 and Dept. of ...

متن کامل

On a special case of Hadwiger's conjecture

Hadwiger’s Conjecture seems difficult to attack, even in the very special case of graphs G of independence number α(G) = 2. We present some results in this special case.

متن کامل

The edge version of Hadwiger's conjecture

A well known conjecture of Hadwiger asserts that Kn+1 is the only minor minimal graph of chromatic number greater than n. In this paper, all minor minimal graphs of chromatic index greater than n are determined. c © 2008 Elsevier B.V. All rights reserved.

متن کامل

An approximate version of Hadwiger's conjecture for claw-free graphs

Hadwiger’s conjecture states that every graph with chromatic number χ has a clique minor of size χ. In this paper we prove a weakened version of this conjecture for the class of claw-free graphs (graphs that do not have a vertex with three pairwise nonadjacent neighbors). Our main result is that a claw-free graph with chromatic number χ has a clique minor of size ⌈23χ⌉.

متن کامل

Hadwiger's conjecture for K 6-free graphs

In 1943, Hadwiger made the conjecture that every loopless graph not contractible to the complete graph on t+1 vertices is t-colourable. When t ≤ 3 this is easy, and when t = 4, Wagner’s theorem of 1937 shows the conjecture to be equivalent to the four-colour conjecture (the 4CC). However, when t ≥ 5 it has remained open. Here we show that when t = 5 it is also equivalent to the 4CC. More precis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 2006