The strength of crystalline color superconductors

نویسندگان

  • Massimo Mannarelli
  • Krishna Rajagopal
  • Rishi Sharma
چکیده

We present a study of the shear modulus of the crystalline color superconducting phase of quark matter, showing that this phase of dense, but not asymptotically dense, quark matter responds to shear stress as a very rigid solid. This phase is characterized by a gap parameter ∆ that is periodically modulated in space and therefore spontaneously breaks translational invariance. We derive the effective action for the phonon fields that describe spaceand time-dependent fluctuations of the crystal structure formed by ∆, and obtain the shear modulus from the coefficients of the spatial derivative terms. Within a Ginzburg-Landau approximation, we find shear moduli which are 20 to 1000 times larger than those of neutron star crusts. This phase of matter is thus more rigid than any known material in the universe, but at the same time the crystalline color superconducting phase is also superfluid. These properties raise the possibility that the presence of this phase within neutron stars may have distinct implications for their phenomenology. For example, (some) pulsar glitches may originate in crystalline superconducting neutron star cores.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure effects on Ca60Al40 metallic glass superconductors

Theoretical computation of the pressure dependence superconducting state parameters of binary Ca60Al40 is reported using model potential formalism. Explicit expressions have been derived for the volume dependence of the electron–phonon coupling strength λ and the Coulomb pseudopotential μ* considering the variation of Fermi momentum KF and Debye temperature ӨD with volume. Well known Ashcroft’s...

متن کامل

Color Superconducting Phases of Cold Dense Quark Matter

We investigate color superconducting phases of cold quark matter at densities relevant for the interiors of compact stars. At these densities, electrically neutral and weak-equilibrated quark matter can have unequal numbers of up, down, and strange quarks. The QCD interaction favors Cooper pairs that are antisymmetric in color and in flavor, and a crystalline color superconducting phase can occ...

متن کامل

Synthesis of Wurtzite Nano-crystalline ZnO-CoO Pigment by High Energy Milling

Zn0.9Co0.1O ceramic pigments were synthesized using simple high energy milling method. Zinc and cobalt oxides were used as starting materials. Products were investigated using simultaneous thermal analysis and fourier transformation infrared. Pigments were characterized using X-ray diffraction, diffuse reflectance and Scanning Electron Microscopy. The results showed the effect of calcination te...

متن کامل

Angular Momentum Mixing in Crystalline Color Superconductivity

In crystalline color superconductivity, quark pairs form at non-zero total momentum. This crystalline order potentially enlarges the domain of color superconductivity in cold dense quark matter. We present a perturbative calculation of the parameters governing the crystalline phase and show that this is indeed the case. Nevertheless, the enhancement is modest, and to lowest order is independent...

متن کامل

Chemical Synthesis of Nano-Crystalline Nickel-Zinc Ferrite as a Magnetic Pigment

The nano-crystalline nickel-zinc ferrite was prepared via chemical synthesis. Zinc nitrate, nickel nitrate, iron nitrate hydrate, citric acid and ethylene glycol were used as precursor materials. Crystallization behavior of the precursor was studied by X-ray diffraction (XRD). Nanoparticle phases can change amorphous to spinel ferrite depending on the calcination temperature and crystallite siz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008