Indecomposability of polynomials and related Diophantine equations
نویسنده
چکیده
We present a new criterion for indecomposability of polynomials over Z. Using the criterion we obtain general finiteness result on polynomial Diophantine equation f(x) = g(y).
منابع مشابه
Complete decomposition of Dickson-type polynomials and related Diophantine equations
We characterize decomposition over C of polynomials f (a,B) n (x) defined by the generalized Dickson-type recursive relation (n ≥ 1), f (a,B) 0 (x) = B, f (a,B) 1 (x) = x, f (a,B) n+1 (x) = xf (a,B) n (x)− af (a,B) n−1 (x), where B, a ∈ Q or R. As a direct application of the uniform decomposition result, we fully settle the finiteness problem for the Diophantine equation f (a,B) n (x) = f (â,B̂)...
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملReconstruction problems for graphs, Krawtchouk polynomials and Diophantine equations
We give an overview about some reconstruction problems in graph theory, which are intimately related to integer roots of Krawtchouk polynomials. In this context, Tichy and the author recently showed that a binary Diophantine equation for Krawtchouk polynomials only has finitely many integral solution. Here, this result is extended. By using a method of Krasikov, we decide the general finiteness...
متن کاملA Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$
In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.
متن کاملIndecomposability of Polynomials via Jacobian Matrix
Indecomposable polynomials are a special class of absolutely irreducible polynomials. Some improvements of important effective results on absolute irreducibility have recently appeared using Ruppert’s matrix. In a similar way, we show in this paper that the use of a Jacobian matrix gives sharp bounds for the indecomposability problem.
متن کامل