Electrochemical detection of sugar-related compounds using boron-doped diamond electrodes.
نویسندگان
چکیده
Electrochemical detection of sugar-related compounds was conducted using a boron-doped diamond (BDD) electrode as a detector for flow-injection analysis (FIA). Sugar-related compounds oxidize at high applied potentials, for which the BDD electrode is suitable for electrochemical measurements. Conditions for an FIA system with a BDD detector were optimized, and the following detection limits were achieved for sugar-related compounds: monosaccharides, 25-100 pmol; sugar alcohols, 10 pmol; and oligosaccharides, 10 pmol. The detection limit for monosaccharide D-glucose (Glu) was 105 pmol (S/N = 3). A linear range was acquired from the detection limit to 50 nmol, and the relative standard deviation was 0.65% (20 nmol, n = 6). A high-performance liquid chromatography (HPLC) column was added to the system between the sample injector and the detector and detection limits to the picomole level were achieved, which is the same for the HPLC system and the FIA system. The electrochemical oxidation reaction of Glu was examined using cyclic voltammetry with the BDD detector. The reaction proved to be irreversible, and proceeded according to the following two-step mechanism: (1) application of a high potential (2.00 V vs. Ag/AgCl) to the electrode causes water to electrolyze on the electrode surface with the simultaneous generation of a hydroxyl radical on the surface, and (2) the hydroxyl radical indirectly oxidizes Glu. Thus, Glu can be detected by an increase in the oxidation current caused by reactions with hydroxy radicals.
منابع مشابه
Determination of Clinically Relevant Compounds using HPLC and Electrochemical Detection with a Boron-Doped Diamond Electrode
متن کامل
Simultaneous detection of iodine and iodide on boron doped diamond electrodes.
Individual and simultaneous electrochemical detection of iodide and iodine has been performed via cyclic voltammetry on boron doped diamond (BDD) electrodes in a 1M NaClO(4) (pH 8) solution, representative of typical environmental water conditions. It is feasible to compute accurate calibration curve for both compounds using cyclic voltammetry measurements by determining the peak current intens...
متن کاملElectrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes.
Electrochemical oxidation of oxalic acid has been investigated at bare, highly boron-doped diamond electrodes. Cyclic voltammetry and flow injection analysis with amperometric detection were used to study the electrochemical reaction. Hydrogen-terminated diamonds exhibited well-defined peaks of oxalic acid oxidation in a wide pH range. A good linear response was observed for a concentration ran...
متن کاملElectrochemical Applications of Conductive Diamond Electrodes
Diamond is a very attractive material for many potential applications due to its outstanding properties. In particular, highly boron-doped conductive diamond films prepared by CVD process have received attention from electrochemists owing to the superior electrochemical properties such as wide potential window, very low background current, chemical and physical stability. In this project, the e...
متن کاملBoron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine.
The electrochemical oxidation behaviour at boron doped diamond and glassy carbon electrodes of the sulphur-containing amino acids cysteine and methionine, using cyclic and differential pulse voltammetry over a wide pH range, was compared. The oxidation reactions of these amino acids are irreversible, diffusion-controlled pH dependent processes, and occur in a complex cascade mechanism. The amin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 28 2 شماره
صفحات -
تاریخ انتشار 2012