An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications

نویسندگان

  • Zdenek Dostál
  • Tomás Kozubek
چکیده

We propose a modification of our MPGP algorithm for the solution of bound constrained quadratic programming problems so that it can be used for minimization of a strictly convex quadratic function subject to separable convex constraints. Our active set based algorithm explores the faces by conjugate gradients and changes the active sets and active variables by gradient projections, possibly with the superrelaxation steplength. The solution error in terms of extreme eigenvalues guarantees that if a class of problems has the spectrum of the Hessian matrix in a given positive interval, then the algorithm can find and recognize an approximate solution of any particular problem in a number of iterations that is uniformly bounded. We also show how to use the algorithm for the solution of separable and equality constraints. The power of our algorithm and its optimality demonstrated on the solution of two cantilever beams in mutual contact with Tresca friction discretized by more than four millions nodal variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal Algorithm for Minimization of Quadratic Functions with Bounded Spectrum Subject to Separable Convex Inequality and Linear Equality Constraints

An, in a sense, optimal algorithm for minimization of quadratic functions subject to separable convex inequality and linear equality constraints is presented. Its unique feature is an error bound in terms of bounds on the spectrum of the Hessian of the cost function. If applied to a class of problems with the spectrum of the Hessians in a given positive interval, the algorithm can find approxim...

متن کامل

Linear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints

In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

MULTI-OBJECTIVE OPTIMIZATION WITH PREEMPTIVE PRIORITY SUBJECT TO FUZZY RELATION EQUATION CONSTRAINTS

This paper studies a new multi-objective fuzzy optimization prob- lem. The objective function of this study has dierent levels. Therefore, a suitable optimized solution for this problem would be an optimized solution with preemptive priority. Since, the feasible domain is non-convex; the tra- ditional methods cannot be applied. We study this problem and determine some special structures related...

متن کامل

Separable programming problems with the max-product fuzzy relation equation constraints

In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with decreasing and increasing objective functions with the same constraints. They are solved by the maximum solution and one of minimal solutions of its feasible domain, respectively. Their combination produces the original optimal solution. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2012