Approximation Algorithms and Heuristics for Classical Planning
نویسندگان
چکیده
Automated planning has been an active area of research in theoretical computer science and Artificial Intelligence (AI) for over 40 years. Planning is the study of general purpose algorithms that accept as input an initial state, a set of desired goal states, and a planning domain model that describes how actions can transform the state. The problem is to find a sequence of actions that transforms the initial state into one of the goal states. Planning is widely applicable, and has been used in such diverse application domains as spacecraft control [MNPW98], planetary rover operations [BJMR05], automated nursing aides [MP02], image processing [GPNV03], computer security [BGHH05] and automated manufacturing [RDF05]. Planning is also the subject of continued and lively ongoing research. In this chapter, we will present an overview of how approximations and related techniques are used in automated planning. We focus on classical planning problems, where states are conjunctions of propositions, all state information is known to the planner, and all action outcomes are deterministic. Classical planning is nonetheless a large problem class that generalizes many combinatorial problems including bin-packing ∗Universities Space Research Association †The authors gratefully acknowledge Sailesh Ramakrishnan, Ronen Brafman and Michael Freed for reviewing our early drafts
منابع مشابه
Computation of h with Factored Planning
The main approach for classical planning is heuristic search. Many cost heuristics are based on the delete relaxation. The optimal heuristic of a delete free planning problem is called h. This thesis explores two new ways to compute h. Both approaches use factored planning, which decomposes the original planning problem to work on each subproblem separately. The algorithm reuses the subsolution...
متن کاملExtending Classical Planning Heuristics to Probabilistic Planning with Dead-Ends
Recent domain-determinization techniques have been very successful in many probabilistic planning problems. We claim that traditional heuristic MDP algorithms have been unsuccessful due mostly to the lack of efficient heuristics in structured domains. Previous attempts like mGPT used classical planning heuristics to an all-outcome determinization of MDPs without discount factor ; yet, discounte...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کاملCost-Sharing Approximations for h+
Relaxations based on (either complete or partial) ignoring delete effects of the actions provide the basis for some seminal classical planning heuristics. However, the palette of the conceptual tools exploited by these heuristics remains rather limited. We study a framework for approximating the optimal cost solutions for problems with no delete effects that bridges between certain works on heu...
متن کاملA Hybrid Solution Approach Based on Benders Decomposition and Meta-Heuristics to Solve Supply Chain Network Design Problem
Supply Chain Network Design (SCND) is a strategic supply chain management problem that determines its configuration. This mainly focuses on the facilities location, capacity sizing, technology selection, supplier selection, transportation, allocation of production and distribution facilities to the market, and so on. Although the optimal solution of the SCND problem leads to a significant reduc...
متن کامل