Nel ’ s category theory based differential and integral Calculus , or Did Newton know category theory ?
نویسنده
چکیده
In a series of publications in the early 1990s, L D Nel set up a study of non-normable topological vector spaces based on methods in category theory. One of the important results showed that the classical operations of derivative and integral in Calculus can in fact be obtained by a rather simple construction in categories. Here we present this result in a concise form. It is important to note that the respective differentiation does not lead to any so called generalized derivatives, for instance, in the sense of distributions, hyperfunctions, etc., but it simply corresponds to the classical one in Calculus. Based on that categorial construction, Nel set up an infinite dimensional calculus which can be applied to functions defined on non-convex domains with empty interior, a situation of great importance in the solution of partial differential equations.
منابع مشابه
2010 Category Theory Octoberfest
Steve Awodey (CMU): “Sketch of the homotopy interpretation of intensional type theory” Abstract: As a tutorial of sorts, I will outline the homotopy interpretation of intensional type theory and survey some of the recent results by various people. As a tutorial of sorts, I will outline the homotopy interpretation of intensional type theory and survey some of the recent results by various people...
متن کاملPOWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES
The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, w...
متن کاملIs ZF a hack?: Comparing the complexity of some (formalist interpretations of) foundational systems for mathematics
This paper presents Automath encodings (which also are valid in LF/λP ) of various kinds of foundations of mathematics. Then it compares these encodings according to their size, to find out which foundation is the simplest. The systems analyzed in this way are two kinds of set theory (ZFC and NF), two systems based on Church’s higher order logic (Isabelle/Pure and HOL), three kinds of type theo...
متن کاملHomotopy approximation of modules
Deleanu, Frei, and Hilton have developed the notion of generalized Adams completion in a categorical context. In this paper, we have obtained the Postnikov-like approximation of a module, with the help of a suitable set of morphisms.
متن کاملYet Another Application of the Theory of ODE in the Theory of Vector Fields
In this paper we are supposed to define the θ−vector field on the n−surface S and then investigate about the existence and uniqueness of its integral curves by the Theory of Ordinary Differential Equations. Then thesubject is followed through some examples.
متن کامل