Design of Variable-friction devices for shoe-floor contact

نویسندگان

  • Guillaume Millet
  • Martin Otis
  • Daniel Horodniczy
  • Jeremy R. Cooperstock
چکیده

In rehabilitation training, high-fidelity simulation environments are needed for reproducing the effects of slippery surfaces, in which potential balance failure conditions can be reproduced on demand. Motivated by these requirements, this article considers the design of variable-friction devices for use in the context of human walking on surfaces in which the coefficient of friction can be controlled dynamically. Various designs are described, aiming at rendering low-friction shoe-floor contact, associated with slippery surfaces such as ice, as well as higher-friction values more typical of surfaces such as pebbles, sand, or snow. These designs include an array of omnidirectional rolling elements, a combination of lowand highfriction coverings whose contact pressure distribution is controlled, and modulation of low-frequency vibration normal to the surface. Our experimentation investigated the static coefficient of friction attainable with each of these designs. Rolling elements were found to be the most slippery, providing a coefficient of friction as low as 0.03, but with significant drawbacks from the perspective of our design objectives. A controlled pressure distribution of lowand high-friction coverings allowed for a minimum coefficient of friction of 0.06. The effects of vibration amplitude and frequency on sliding velocity were also explored. Increases in amplitude resulted in higher velocities, but vibration frequencies greater than 25 Hz reduced sliding velocities. To meet our design objectives, a novel approach involving a friction-variation mechanism, embedded in a shoe sole, is proposed. © 2017 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamic Coefficient of Friction Measurement Device for Shoe/Floor Interface Testing

A dynamic coefficient of friction (COF) measurement device is described for use in recording shoe/floor slip resistance. This device is computercontrolled and allows changes in the shoe/floor interface velocity and vertical force applied during a test. Different sole materials, floors, and contaminants such as water or oil are testable. Repeatability tests of the device were conducted of four v...

متن کامل

The effects of 10% front load carriage on the likelihood of slips and falls.

The objective of the present study was to evaluate if anterior load carriage would increase the likelihood of slips or falls while walking over a slippery floor surface. The study hypothesized that anterior load carriage may alter spatial-temporal characteristics, such as heel contact velocity, walking velocity (i.e., the whole body center-of-mass velocity), and step length, as well as friction...

متن کامل

Biomechanical gait analysis for the extraction of slip resistance test parameters.

Falling accidents caused by slipping represent a high proportion of all accidents and are cost intensive in industry as well as in the private sphere. To prevent such accidents, the slip resistance of flooring must be evaluated. Therefore, measurement methods are necessary. These methods must provide results that comply with an individual's perception of when a floor is slippery. This article d...

متن کامل

Shoe Sole Tread Designs and Outcomes of Slipping and Falling on Slippery Floor Surfaces

A gait experiment was conducted under two shoe sole and three floor conditions. The shoe soles and floors were characterized by the tread and groove designs on the surface. The coefficients of friction (COF) on the floor in the target area were measured. The subjects were required to walk on a walkway and stepping on a target area covered with glycerol. The motions of the feet of the subjects w...

متن کامل

A Hybrid Thermal Assisted Friction Stir Welding Approach for PMMA Sheets

The widespread application of thermoplastic polymers in different aspects of industries has motivated researchers and companies to improve and upgrade their forming, joining and assembling processes to overcome their limitations. One of the newest joining methods of thermoplastics is friction stir welding which is based on frictional heat generated through contact between a rotating tool and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017