1 Group Action on Instanton Bundles over P 3 1

نویسنده

  • GIORGIO OTTAVIANI
چکیده

Abstract: Denote by MI(k) the moduli space of k-instanton bundles E of rank 2 on P = P(V ) and by Zk(E) the scheme of k-jumping lines. We prove that [E] ∈ MI(k) is not stable for the action of SL(V ) if Zk(E) 6= ∅. Moreover dimSym(E) ≥ 1 if lengthZk(E) ≥ 2. We prove also that E is special if and only if Zk(E) is a smooth conic. The action of SL(V ) on the moduli of special instanton bundles is studied in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On framed instanton bundles and their deformations

We consider a compact twistor space P and assume that there is a surface S ⊂ P, which has degree one on twistor fibres and contains a twistor fibre F, e.g. P a LeBrun twistor space ([20],[18]). Similar to [6] and [5] we examine the restriction of an instanton bundle V equipped with a fixed trivialisation along F to a framed vector bundle over (S,F). First we develope inspired by [13] a suitable...

متن کامل

Nondegenerate Multidimensional Matrices and Instanton Bundles

In this paper we prove that the moduli space of rank 2n symplectic instanton bundles on P2n+1, defined from the well-known monad condition, is affine. This result was not known even in the case n = 1, where by Atiyah, Drinfeld, Hitchin, and Manin in 1978 the real instanton bundles correspond to self-dual Yang Mills Sp(1)-connections over the 4-dimensional sphere. The result is proved as a conse...

متن کامل

On the semistability of instanton sheaves over certain projective varieties

We show that instanton bundles of rank r ≤ 2n − 1, defined as the cohomology of certain linear monads, on an n-dimensional projective variety with cyclic Picard group are semistable in the sense of MumfordTakemoto. Furthermore, we show that rank r ≤ n linear bundles with nonzero first Chern class over such varieties are stable. We also show that these bounds are sharp. 2000 MSC: 14J60; 14F05

متن کامل

The Tangent Space at a Special Symplectic Instanton Bundle on IP

ABSTRACT :Let MISimp,IP2n+1(k) be the moduli space of stable symplectic instanton bundles on IP with second Chern class c2 = k (it is a closed subscheme of the moduli space MIIP2n+1(k)) We prove that the dimension of its Zariski tangent space at a special (symplectic) instanton bundle is 2k(5n − 1) + 4n − 10n + 3 , k ≥ 2. It follows that special symplectic instanton bundles are smooth points fo...

متن کامل

ar X iv : 1 10 8 . 39 51 v 1 [ he p - th ] 1 9 A ug 2

We present a unified eight-dimensional approach to instanton equations on several seven-dimensional manifolds associated to a six-dimensional homogeneous nearly Kähler manifold. The cone over the sinecone on a nearly Kähler manifold has holonomy group Spin(7) and can be foliated by submanifolds with either holonomy group G2, a nearly parallel G2-structure or a cocalibrated G2-structure. We show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001