Thermal convection with a freely moving top boundary

نویسندگان

  • Jin-Qiang Zhong
  • Jun Zhang
چکیده

In thermal convection, coherent flow structures emerge at high Rayleigh numbers as a result of intrinsic hydrodynamic instability and self-organization. They range from small-scale thermal plumes that are produced near both the top and the bottom boundaries to large-scale circulations across the entire convective volume. These flow structures exert viscous forces upon any boundary. Such forces will affect a boundary which is free to deform or change position. In our experiment, we study the dynamics of a free boundary that floats on the upper surface of a convective fluid. This seemingly passive boundary is subjected solely to viscous stress underneath. However, the boundary thermally insulates the fluid, modifying the bulk flow. As a consequence, the interaction between the free boundary and the convective flow results in a regular oscillation. We report here some aspects of the fluid dynamics and discuss possible links between our experiment and continental drift. © 2005 American Institute of Physics. DOI: 10.1063/1.2131924

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of unsteady double-diffusive mixed convection flow with soret and dufour effects in a square enclosure with top moving lid

The present study considers the numerical examination of an unsteady thermo-solutal mixed convection when the extra mass and heat diffusions, called as Soret and Dufour effects, were not neglected. The numerical simulations were performed in a lid-driven cavity, where the horizontal walls were kept in constant temperatures and concentrations. The vertical walls were well insulated. A finite vol...

متن کامل

Self-induced cyclic reorganization of free bodies through thermal convection.

We investigate the dynamics of a thermally convecting fluid as it interacts with freely moving solid objects. This is a previously unexplored paradigm of interactions between many free bodies mediated by thermal convection, which gives rise to surprising robust oscillations between different large-scale circulations. Once begun, this process repeats cyclically, with the collection of objects (s...

متن کامل

Self-Induced Cyclic Reorganization of Many Bodies Through Thermal Convection

We investigate the dynamics of a thermally convecting fluid as it interacts with freely moving solid objects. This is a previously unexplored paradigm of many-body interactions mediated by thermal convection, which gives rise to surprising robust oscillations between different large-scale circulations. Once begun, this process repeats cyclically, with the collection of spheres entrained and pac...

متن کامل

A Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method

A Lattice Boltzmann method is applied to demonstrate the comparison results of simulating natural convection in an open end cavity using different hydrodynamic and thermal boundary conditions. The Prandtl number in the present simulation is 0.71, Rayleigh numbers are 104,105 and 106 and viscosities are selected 0.02 and 0.05. On-Grid bounce-back method with first-order accuracy and non-slip met...

متن کامل

Convection in a Tilted Square Enclosure with Various Boundary Conditions and Having Heat Generating Solid Body at its Center

In this study free convection flow and heat transfer of a fluid inside a tilted square enclosure having heat conducting and generating solid body positioned in the center of the enclosure with various thermal boundary conditions has been investigated numerically. The governing equations are transformed into non-dimensional form and the resulting partial differential equations are solved by Fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006