Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan.
نویسندگان
چکیده
Medical devices provide an ecological niche for microbes to flourish as a biofilm community, protected from antimicrobials and host defenses. Biofilms formed by Candida albicans, the most common fungal pathogen, survive exposure to extraordinarily high drug concentrations. Here, we show that beta-glucan synthase Fks1p produces glucan, which is deposited in the biofilm matrix. The extracellular glucan is required for biofilm resistance and acts by sequestering antifungals, rendering cells resistant to their action. These findings provide the genetic basis for how biofilm matrix production governs drug resistance by impeding drug diffusion and also identify a useful biofilm drug target.
منابع مشابه
Role of matrix β-1,3 glucan in antifungal resistance of non-albicans Candida biofilms.
Candida biofilm infections pose an increasing threat in the health care setting due to the drug resistance associated with this lifestyle. Several mechanisms underlie the resistance phenomenon. In Candida albicans, one mechanism involves drug impedance by the biofilm matrix linked to β-1,3 glucan. Here, we show this is important for other Candida spp. We identified β-1,3 glucan in the matrix, f...
متن کاملInterface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation.
Candida albicans frequently infects medical devices by growing as a biofilm, i.e., a community of adherent organisms entrenched in an extracellular matrix. During biofilm growth, Candida spp. acquire the ability to resist high concentrations of antifungal drugs. One recently recognized biofilm resistance mechanism involves drug sequestration by matrix β-1,3 glucan. Using a candidate gene approa...
متن کاملRole of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene.
Candida infections frequently involve drug-resistant biofilm growth on device surfaces. Glucan synthase gene FKS1 has been linked to triazole resistance in Candida biofilms. We tested the impact of FKS1 modulation on susceptibility to additional antifungal classes. Reduction of FKS1 expression rendered biofilms more susceptible to amphotericin B, anidulafungin, and flucytosine. Increased resist...
متن کاملCommunity participation in biofilm matrix assembly and function.
Biofilms of the fungus Candida albicans produce extracellular matrix that confers such properties as adherence and drug resistance. Our prior studies indicate that the matrix is complex, with major polysaccharide constituents being α-mannan, β-1,6 glucan, and β-1,3 glucan. Here we implement genetic, biochemical, and pharmacological approaches to unravel the contributions of these three constitu...
متن کاملPutative Role of -1,3 Glucans in Candida albicans Biofilm Resistance
Biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface. Nearly all device-associated infections involve growth in the biofilm life style. Biofilm communities have characteristic architecture and distinct phenotypic properties. The most clinically important phenotype involves extraordinary resistance to antimicrobial therapy, making biofilm infections v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of infectious diseases
دوره 202 1 شماره
صفحات -
تاریخ انتشار 2010