The Effect of Incorporating Good Learners' Ratings in e-Learning Content-based Recommender System

نویسندگان

  • Khairil Imran Bin Ghauth
  • Nor Aniza Abdullah
چکیده

One of the anticipated challenges of today’s e-learning is to solve the problem of recommending from a large number of learning materials. In this study, we introduce a novel architecture for an e-learning recommender system. More specifically, this paper comprises the following phases i) to propose an e-learning recommender system based on content-based filtering and good learners’ ratings, and ii) to compare the proposed e-learning recommender system with exiting e-learning recommender systems that use both collaborative filtering and content-based filtering techniques in terms of system accuracy and student’s performance. The results obtained from the test data show that the proposed e-learning recommender system outperforms existing e-learning recommender systems that use collaborative filtering and content-based filtering techniques with respect to system accuracy of about 83.28% and 48.58%, respectively. The results further show that the learner’s performance is increased by at least 12.16% when the students use the e-learning with the proposed recommender system as compared to other recommendation techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning materials recommendation using good learners’ ratings and content-based filtering

The enormity of the amount of learning materials in e-learning has led to the difficulty of locating suitable learning materials for a particular learning topic, creating the need for recommendation tools within a learning context. In this paper, we aim to address this need by proposing a novel e-learning recommender system framework that is based on two conceptual foundations—peer learning and...

متن کامل

Measuring learner’s performance in e-learning recommender systems

A recommender system is a piece of software that helps users to identify the most interesting and relevant learning items from a large number of items. Recommender systems may be based on collaborative filtering (by user ratings), content-based filtering (by keywords), and hybrid filtering (by both collaborative and content-based filtering). Recommender systems have been a useful tool to recomm...

متن کامل

Utilizing Learners' Negative Ratings in Semantic Content-based Recommender System for e-Learning Forum

Nowadays, most of e-learning systems embody online discussion forums as a medium for collaborative learning that supports knowledge sharing and information exchanging between learners. The exponential growth of the available shared information in e-learning online discussion forums has caused a difficulty for learners in discovering interesting information. This paper introduces a novel recomme...

متن کامل

Ensemble-based Top-k Recommender System Considering Incomplete Data

Recommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two si...

متن کامل

Hybrid Recommender System Based on Variance Item Rating

K-nearest neighbors (KNN) based recommender systems (KRS) are among the most successful recent available recommender systems. These methods involve in predicting the rating of an item based on the mean of ratings given to similar items, with the similarity defined by considering the mean rating given to each item as its feature. This paper presents a KRS developed by combining the following app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Educational Technology & Society

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2011