The local atomic quasicrystal structure of the icosahedral Mg25Y11Zn64 alloy
نویسندگان
چکیده
A local and medium range atomic structure model for the face centred icosahedral (fci) Mg25Y11Zn64 alloy has been established in a sphere of r = 27 Å. The model was refined by least squares techniques using the atomic pair distribution (PDF) function obtained from synchrotron powder diffraction. Three hierarchies of the atomic arrangement can be found: (i) five types of local coordination polyhedra for the single atoms, four of which are of Frank–Kasper type. In turn, they (ii) form a three-shell (Bergman) cluster containing 104 atoms, which is condensed sharing its outer shell with its neighbouring clusters, and (iii) a cluster connecting scheme corresponding to a three-dimensional tiling leaving space for a few glue atoms. Inside adjacent clusters, Y8 cubes are tilted with respect to each other and thus allow for overall icosahedral symmetry. It is shown that the title compound is essentially isomorphic to its holmium analogue. Therefore, fci-Mg–Y–Zn can be seen as the representative structure type for the other rare earth analogues fci-Mg–Zn–RE (RE = Dy, Er, Ho, Tb) reported in the literature. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Local atomic structure and the valence band structure of the rhombic-triacontahedral quasicrystal, its 1/1 approximant, and the Mackay-icosahedral quasicrystal in the Al-Mg-Pd alloy system
The rhombic-triacontahedral-type quasicrystal ~RT-QC!, its (1/1, 1/1, 1/1) approximant (RT-1/1) and the Mackay-icosahedral-type quasicrystal ~MI-QC! can be formed in the Al-Mg-Pd system. The radial distribution function RDF(r) spectra of the three compounds is derived from neutron diffraction experiments. Powdered x-ray diffraction Rietveld refinement is also carried out to determine the atomic...
متن کاملHow do quasicrystals grow?
Using molecular simulations, we show that the aperiodic growth of quasicrystals is controlled by the ability of the growing quasicrystal nucleus to incorporate kinetically trapped atoms into the solid phase with minimal rearrangement. In the system under investigation, which forms a dodecagonal quasicrystal, we show that this process occurs through the assimilation of stable icosahedral cluster...
متن کاملLocal Order in Single Grain Cd-Yb Icosahedral Phase
Single grains of icosahedral Cd84Yb16 quasicrystalline phase were characterized using high resolution transmission electron microcopy (HRTEM) technique. Image reconstruction of the obtained multiple through-focal series for both the two and five-fold axes are consistent with the local cluster structure of concentric polyhedra consisting of Cd tetrahedron (1/3 occupied icosahedron), Cd dodecahed...
متن کاملStructure of the fivefold surface of the icosahedral Al-Cu-Fe quasicrystal: experimental evidence of bulk truncations at larger interlayer spacings.
Based on scanning tunneling microscopy of the fivefold surface of the icosahedral Al-Cu-Fe quasicrystal and the refined structure model of the isostructural i-Al-Pd-Mn, we present evidence that the surface corresponds to bulk truncations at the positions where blocks of atomic layers are separated by larger interlayer spacings (gaps). Both step-height distribution and high resolution scanning t...
متن کاملLattice dynamics of the Zn-Mg-Sc icosahedral quasicrystal and its Zn-Sc periodic 1/1 approximant.
Quasicrystals are long-range-ordered materials that lack translational invariance, so the study of their physical properties remains a challenging problem. Here, we have carried out inelastic-X-ray- and neutron-scattering experiments on single-grain samples of the Zn-Mg-Sc icosahedral quasicrystal and of the Zn-Sc periodic cubic 1/1 approximant, with the aim of studying the respective influence...
متن کامل