Shaping Leg Muscles in Drosophila: Role of ladybird, a Conserved Regulator of Appendicular Myogenesis
نویسندگان
چکیده
Legs are locomotor appendages used by a variety of evolutionarily distant vertebrates and invertebrates. The primary biological leg function, locomotion, requires the formation of a specialised appendicular musculature. Here we report evidence that ladybird, an orthologue of the Lbx1 gene recognised as a hallmark of appendicular myogenesis in vertebrates, is expressed in leg myoblasts, and regulates the shape, ultrastructure and functional properties of leg muscles in Drosophila. Ladybird expression is progressively activated in myoblasts associated with the imaginal leg disc and precedes that of the founder cell marker dumbfounded. The RNAi-mediated attenuation of ladybird expression alters properties of developing myotubes, impairing their ability to grow and interact with the internal tendons and epithelial attachment sites. It also affects sarcomeric ultrastructure, resulting in reduced leg muscle performance and impaired mobility in surviving flies. The over-expression of ladybird also results in an abnormal pattern of dorsally located leg muscles, indicating different requirements for ladybird in dorsal versus ventral muscles. This differential effect is consistent with the higher level of Ladybird in ventrally located myoblasts and with positive ladybird regulation by extrinsic Wingless signalling from the ventral epithelium. In addition, ladybird expression correlates with that of FGF receptor Heartless and the read-out of FGF signalling downstream of FGF. FGF signals regulate the number of leg disc associated myoblasts and are able to accelerate myogenic differentiation by activating ladybird, leading to ectopic muscle fibre formation. A key role for ladybird in leg myogenesis is further supported by its capacity to repress vestigial and to down-regulate the vestigial-governed flight muscle developmental programme. Thus in Drosophila like in vertebrates, appendicular muscles develop from a specialised pool of myoblasts expressing ladybird/Lbx1. The ladybird/Lbx1 gene family appears as a part of an ancient genetic circuitry determining leg-specific properties of myoblasts and making an appendage adapted for locomotion.
منابع مشابه
The conserved transcription factor Mef2 has multiple roles in adult Drosophila musculature formation.
Muscle is an established paradigm for analysing the cell differentiation programs that underpin the production of specialised tissues during development. These programs are controlled by key transcription factors, and a well-studied regulator of muscle gene expression is the conserved transcription factor Mef2. In vivo, Mef2 is essential for the development of the Drosophila larval musculature:...
متن کاملDrosophila MEF2 is a direct regulator of Actin57B transcription in cardiac, skeletal, and visceral muscle lineages
To identify regulatory events occurring during myogenesis, we characterized the transcriptional regulation of a Drosophila melanogaster actin gene, Actin 57B. Act57B transcription is first detected in visceral muscle precursors and is detectable in all embryonic muscles by the end of embryogenesis. Through deletion analysis we identified a 595 bp promoter element that was sufficient for high le...
متن کاملVestigial and scalloped in the ladybird beetle: a conserved function in wing development and a novel function in pupal ecdysis.
In Drosophila melanogaster, Vestigial (Vg) and Scalloped (Sd) form a transcription factor complex and play a crucial role in wing development. To extend our knowledge of insect wing formation, we isolated vg and sd homologues from two ladybird beetle species, Henosepilachna vigintioctopunctata and Harmonia axyridis. Although the ladybird beetle vg homologues had only low homology with D. melano...
متن کاملThe conserved transmembrane proteoglycan Perdido/Kon-tiki is essential for myofibrillogenesis and sarcomeric structure in Drosophila
Muscle differentiation requires the assembly of high-order structures called myofibrils, composed of sarcomeres. Even though the molecular organization of sarcomeres is well known, the mechanisms underlying myofibrillogenesis are poorly understood. It has been proposed that integrin-dependent adhesion nucleates myofibrils at the periphery of the muscle cell to sustain sarcomere assembly. Here, ...
متن کاملladybird determines cell fate decisions during diversification of Drosophila somatic muscles.
In the mesoderm of Drosophila embryos, a defined number of cells segregate as progenitors of individual body wall muscles. Progenitors and their progeny founder cells display lineage-specific expression of transcription factors but the mechanisms that regulate their unique identities are poorly understood. Here we show that the homeobox genes ladybird early and ladybird late are expressed in on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 1 شماره
صفحات -
تاریخ انتشار 2006