Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn.
نویسندگان
چکیده
Cutaneous spinal sensory transmission appears to lack inhibitory control in the newborn spinal cord, but the properties of GABAergic and glycinergic synapses in the neonatal dorsal horn have not been characterized. Whole-cell patch-clamp recordings from rat superficial dorsal horn neurons in spinal cord slices at postnatal day 0 (P0) to P2, P6-P7, and P13-P14 revealed an age-dependent increase in the frequency of spontaneous IPSCs, which were abolished by the GABA(A) receptor (GABA(A)R) antagonist bicuculline between P0 and P7 but not at P14. GABA(A)R-mediated miniature IPSCs (mIPSCs), but not glycinergic mIPSCs, were present at birth, and GABA mIPSCs remained more frequent than glycine mIPSCs at all ages. Sciatic nerve stimulation resulted in IPSCs with both GABAergic and glycinergic components, although a larger contribution arose from GABA(A) receptors at all ages. In gramicidin perforated patch-clamp recordings, exogenous GABA applications produced depolarization in 40% of neurons at P0-P2, but the reversal potential of GABA-evoked currents (E(GABA)) was consistently more negative than action potential threshold at this age. By P6-P7, GABA evoked only membrane hyperpolarization. The GABA(B)R agonist baclofen elicited an outward current in all neurons with peak amplitudes observed by P6-P7 and abolished sciatic nerve-evoked monosynaptic glutamatergic EPSCs in all groups. The results show considerable postnatal development of inhibitory processing in the dorsal horn with GABAergic mechanisms initially dominant over glycinergic events. GABA(A)R-mediated depolarizations during the first postnatal week are likely to be important for the maturation of spinal networks but do not provide a major excitatory drive to the newborn dorsal horn.
منابع مشابه
Anandamide Depresses Glycinergic and GABAergic Inhibitory Transmissions in Adult Rat Substantia Gelatinosa Neurons
Cannabinoid CB1 receptors have been found in the superficial dorsal horn of the spinal cord, particularly the substantia gelatinosa (SG), which is thought to play a pivotal role in modulating nociceptive transmission. Although cannabinoids are known to inhibit excitatory transmission in SG neurons, their effects on inhibitory transmission have not yet been examined fully. In order to know furth...
متن کاملAcetylcholine and norepinephrine mediate GABAergic but not glycinergic transmission enhancement by melittin in adult rat substantia gelatinosa neurons.
GABAergic and glycinergic inhibitory synaptic transmissions in substantia gelatinosa (SG; lamina II of Rexed) neurons of the spinal dorsal horn play an important role in regulating nociceptive transmission from the periphery. It has not yet been well known whether each of the inhibitory transmissions plays a distinct role in the regulation. We report an involvement of neurotransmitters in GABAe...
متن کاملDevelopmental change and sexual difference in synaptic modulation produced by oxytocin in rat substantia gelatinosa neurons
We have previously reported that oxytocin produces an inward current at a holding potential of -70 mV without a change in glutamatergic excitatory transmission in adult male rat spinal lamina II (substantia gelatinosa; SG) neurons that play a pivotal role in regulating nociceptive transmission. Oxytocin also enhanced GABAergic and glycinergic spontaneous inhibitory transmissions in a manner sen...
متن کاملC-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat.
Sensory circuits are shaped by experience in early postnatal life and in many brain areas late maturation of inhibition drives activity-dependent development. In the newborn spinal dorsal horn, activity is dominated by inputs from low threshold A fibers, whereas nociceptive C-fiber inputs mature gradually over the first postnatal weeks. How this changing afferent input influences the maturation...
متن کاملGABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats
The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 20 شماره
صفحات -
تاریخ انتشار 2004