Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation.
نویسندگان
چکیده
DYRK1A is a dual-specificity protein kinase that autophosphorylates a conserved tyrosine residue in the activation loop but phosphorylates exogenous substrates only at serine or threonine residues. Tyrosine autophosphorylation of DYRKs is a one-off event that takes place during translation and induces the activation of the kinase. Here we characterize the beta-carboline alkaloid harmine as a potent and specific inhibitor of DYRK1A both in vitro and in cultured cells. Comparative in vitro assays of four kinases of the DYRK family showed that harmine inhibited substrate phosphorylation by DYRK1A more potently than it inhibited substrate phosphorylation by the closely related kinase DYRK1B [half maximal inhibitory concentrations (IC(50)) of 33 nm versus 166 nm, respectively] and by the more distant members of the family, DYRK2 and DYRK4 (1.9 microm and 80 microm, respectively). Much higher concentrations of harmine were required to suppress tyrosine autophosphorylation of the translational intermediate of DYRK1A in a bacterial in vitro translation system (IC(50) = 1.9 microm). Importantly, harmine inhibited the phosphorylation of a specific substrate by DYRK1A in cultured cells with a potency similar to that observed in vitro (IC(50) = 48 nm), without negative effects on the viability of the cells. Overexpression of the DYRK1A gene on chromosome 21 has been implicated in the altered neuronal development observed in Down syndrome. Here, we show that harmine interferes with neuritogenesis in cultured hippocampal neurons. In summary, our data show that harmine inhibits DYRK1A substrate phosphorylation more potently than it inhibits tyrosine autophosphorylation, and provide evidence for a role of DYRK1A in the regulation of neurite formation.
منابع مشابه
Harmine is a β-carboline alkaloid present at highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants
Harmine is a β-carboline alkaloid present at highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell...
متن کاملSelectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors
DYRK1A is a pleiotropic protein kinase with diverse functions in cellular regulation, including cell cycle control, neuronal differentiation, and synaptic transmission. Enhanced activity and overexpression of DYRK1A have been linked to altered brain development and function in Down syndrome and neurodegenerative diseases such as Alzheimer's disease. The β-carboline alkaloid harmine is a high af...
متن کاملβ-Carboline Compounds, Including Harmine, Inhibit DYRK1A and Tau Phosphorylation at Multiple Alzheimer's Disease-Related Sites
Harmine, a β-carboline alkaloid, is a high affinity inhibitor of the dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) protein. The DYRK1A gene is located within the Down Syndrome Critical Region (DSCR) on chromosome 21. We and others have implicated DYRK1A in the phosphorylation of tau protein on multiple sites associated with tau pathology in Down Syndrome and in Alzheime...
متن کاملHarmine stimulates proliferation of human neural progenitors
Harmine is the β-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell...
متن کاملChemical screening identifies the β-Carboline alkaloid harmine to be synergistically lethal with doxorubicin
Despite being an invaluable chemotherapeutic agent for several types of cancer, the clinical utility of doxorubicin is hampered by its age-related and dose-dependent cardiotoxicity. Co-administration of dexrazoxane as a cardioprotective agent has been proposed, however recent studies suggest that it attenuates doxorubicin-induced antitumor activity. Since compounds of natural origin present a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The FEBS journal
دوره 276 21 شماره
صفحات -
تاریخ انتشار 2009