Glucosylsphingosine Is a Highly Sensitive and Specific Biomarker for Primary Diagnostic and Follow-Up Monitoring in Gaucher Disease in a Non-Jewish, Caucasian Cohort of Gaucher Disease Patients
نویسندگان
چکیده
BACKGROUND Gaucher disease (GD) is the most common lysosomal storage disorder (LSD). Based on a deficient β-glucocerebrosidase it leads to an accumulation of glucosylceramide. Standard diagnostic procedures include measurement of enzyme activity, genetic testing as well as analysis of chitotriosidase and CCL18/PARC as biomarkers. Even though chitotriosidase is the most well-established biomarker in GD, it is not specific for GD. Furthermore, it may be false negative in a significant percentage of GD patients due to mutation. Additionally, chitotriosidase reflects the changes in the course of the disease belatedly. This further enhances the need for a reliable biomarker, especially for the monitoring of the disease and the impact of potential treatments. METHODOLOGY Here, we evaluated the sensitivity and specificity of the previously reported biomarker Glucosylsphingosine with regard to different control groups (healthy control vs. GD carriers vs. other LSDs). FINDINGS Only GD patients displayed elevated levels of Glucosylsphingosine higher than 12 ng/ml whereas the comparison controls groups revealed concentrations below the pathological cut-off, verifying the specificity of Glucosylsphingosine as a biomarker for GD. In addition, we evaluated the biomarker before and during enzyme replacement therapy (ERT) in 19 patients, demonstrating a decrease in Glucosylsphingosine over time with the most pronounced reduction within the first 6 months of ERT. Furthermore, our data reveals a correlation between the medical consequence of specific mutations and Glucosylsphingosine. INTERPRETATION In summary, Glucosylsphingosine is a very promising, reliable and specific biomarker for GD.
منابع مشابه
P-111: An Attempt to Facilitate the Production of Transgenic Mouse As A Model for Gene Therapy of Gaucher Disease
Background: Gaucher disease is an autosomal recessive inherited lysosomal storage disorder that affects many of the body's organs and tissues by defective function of the catabolic enzyme β-glucocerebrosidase. Gene therapy is one of the efficient ways for treatment of this disease. Due to the lack of appropriate animal models, in the field of gene therapy little progress has been done.Mate...
متن کاملGlucosylsphingosine Causes Hematological and Visceral Changes in Mice—Evidence for a Pathophysiological Role in Gaucher Disease
Glucosylceramide and glucosylsphingosine are the two major storage products in Gaucher disease (GD), an inherited metabolic disorder caused by a deficiency of the lysosomal enzyme glucocerebrosidase. The build-up of glucosylceramide in the endoplasmic reticulum and prominent accumulation in cell lysosomes of tissue macrophages results in decreased blood cell and platelet counts, and skeletal ab...
متن کاملReport of Four Children with Gaucher Disease and Review of Literature
Gaucher Disease (GD) is the most common type of Lysosomal Storage Disorder and it is divided into three distinct subtypes. The authors here report four different cases of Gaucher Disease, with varying clinical manifestations, and the diagnosis of each established by the low level of Beta-Glucosidase enzyme as well as genetic DNA testing. The study also highlights the importance of early diagnos...
متن کاملGlucocerebrosidase genotype of Gaucher patients in The Netherlands: limitations in prognostic value.
Gaucher disease is a recessively inherited lysosomal storage disorder that is caused by a deficiency in glucocerebrosidase activity. The clinical expression is markedly heterogeneous with respect to age of onset, progression, severity, and neurological involvement. The relative incidence of glucocerebrosidase (GC) mutations has been studied extensively for Jewish but not for non-Jewish Caucasia...
متن کاملGenetic heterogeneity in type 1 Gaucher disease: multiple genotypes in Ashkenazic and non-Ashkenazic individuals.
Nucleotide sequence analysis of a genomic clone from an Ashkenazic Jewish patient with type 1 Gaucher disease revealed a single-base mutation (adenosine to guanosine transition) in exon 9 of the glucocerebrosidase gene. This change results in the amino acid substitution of serine for asparagine. Transient expression studies following oligonucleotide-directed mutagenesis of the normal cDNA confi...
متن کامل