The role of the crystallization temperature on the nanophase structure evolution of poly[(R)-3-hydroxybutyrate].
نویسندگان
چکیده
The nanophase structure of semicrystalline polymers, which determines the mechanical, thermal, and gas permeability behavior, can be quantified by thermal methods. A detailed investigation of the nanophase structure of poly[(R)-3-hydroxybutyrate] (PHB) was performed under conditions of isothermal, quasi-isothermal, and nonisothermal crystallizations. The experimental analyses revealed that the establishment of the nanophase rigid amorphous fraction (RAF) in PHB depends on the temperature at which crystallization occurs. The RAF grows in parallel with the crystal phase during quasi-isothermal crystallization at 30 °C, whereas during nonisothermal crystallization at higher temperatures, RAF starts to develop at 70 °C, in correspondence with the final stages of the crystallization process. The influence of crystallization temperature on the nanophase structure was rationalized taking into account the effect of the mobility of the entangled chain segments during the phase transition. The melting behavior was found to change after isothermal crystallization at 70 °C, revealing that complete RAF mobilization is achieved approximately at this temperature. The temperature of 70 °C could be the limit for the formation and the disappearance of rigid amorphous fraction in the PHB analyzed in the present study.
منابع مشابه
Application of the Taguchi Design for Production of Poly(β-hydroxybutyrate) by Ralstonia eutropha
The Taguchi design of experiments was used to test the relative importance of medium components and environmental factors on poly(β-hydroxybutyrate)(PHB) production by Ralstonia eutropha. The optimum condition was obtained as: fructose concentration, 15 g/L; C/N ratio, 7.4; agitation speed 200 rpm; culture time, 40 h; temperature, 25 ° C; seed age, 15 h. At optimu...
متن کاملSingle crystal morphologies of biodegradable aliphatic polyesters
Single crystals of biodegradable aliphatic polyesters, poly([R]-3-hydroxybutyrate), poly([R]-3-hydroxyvalerate), poly(L-lactic acid), poly( -propiolactone), poly(4-hydroxybutyrate), poly(Æ-valerolactone), poly("caprolactone), poly(ethylene succinate) and poly(tetramethylene adipate), were grown from dilute solution by isothermal crystallization, and the crystal structures and morphologies were ...
متن کاملStudy of Non-Isothermal Crystallization Kinetics of Biodegradable Poly(ethylene adipate)/SiO2 Nanocomposites
Poly(ethylene adipte) and poly(ethylene adipate)/silica nanocomposite (PEAd/SiO2) containing 3 wt. % SiO2 were prepared by an in situ method. The examinations on the non-isothermal crystallization kinetic behavior have been conducted by means of differential scanning calorimeter (DSC). The Avrami, Ozawa, and combined Avrami and Ozawa equations were applied to describe the crystallization kinet...
متن کاملIsothermal Melt Crystallization Kinetic Behavior of Poly (vinylidene fluoride)
Isothermal melt crystallization kinetics of PVDF was investigated by differential scanning calorimetry. Thin PVDF film has been fabricated by the solvent casting technique using dimethylformamide (DMF). Then, the samples were melted and subsequently crystallized in the range of the crystallization temperature (Tc) between 138 and 145 °C. The crystallization kinetics was derived from Avrami equa...
متن کاملExpected nucleation effects of carboxylic acid salts on poly(1-butene)
9,10-Dihydro-9,10-ethano-anthracene-11,12-dicarboxylic acid disodium salt (DHEAS) was synthesized and used as a nucleating agent for poly(1-butene) (iPB). The isothermal crystallization kinetics of iPB having different nucleating agents were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The results showed that the nucleating agents increased the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 117 40 شماره
صفحات -
تاریخ انتشار 2013