Another discrete Fourier transform pairs associated with the Lipschitz-Lerch zeta function
نویسنده
چکیده
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Discrete Fourier transform Alternating zeta functions Hurwitz–Lerch zeta function Lipschitz–Lerch zeta function Lerch zeta function Hurwitz zeta function Legendre chi function Bernoulli polynomials a b s t r a c t It is demonstrated that the alternating Lipschitz–Lerch zeta function and the alternating Hurwitz zeta function constitute a discrete Fourier transform pair. This discrete transform pair makes it possible to deduce, as special cases and consequences, many (mainly new) transformation relations involving the values at rational arguments of alternating variants of various zeta functions, such as the Lerch and Hurwitz zeta functions and Legendre chi function. 1. Introduction and definitions In a recent note [1] it was shown that numerous (known or new) seemingly disparate results involving various special functions, such as the Lipschitz–Lerch zeta function, Lerch zeta function, Hurwitz zeta function and Legendre chi function, could be established in a more general context provided by a discrete Fourier transform (DFT). In this sequel to [1], we aim at deriving the analogous transformation formula which would be valid in the case of the alternating counterparts of these functions. The alternating Hurwitz–Lerch zeta function defined by (cf. [2, p. 121 et seq.])
منابع مشابه
Some discrete Fourier transform pairs associated with the Lipschitz-Lerch Zeta function
Keywords: Hurwitz–Lerch Zeta function Lipschitz–Lerch Zeta function Lerch Zeta function Hurwitz Zeta function Riemann Zeta function Legendre chi function Bernoulli polynomials Bernoulli numbers Discrete Fourier transform a b s t r a c t It is shown that there exists a companion formula to Srivastava's formula for the Lipschitz–Lerch Zeta function [see H.M. Srivastava, Some formulas for the Bern...
متن کاملThe Lerch Transcendent from the Point of View of Fourier Analysis
We obtain some well-known expansions for the Lerch transcendent and the Hurwitz zeta function using elementary Fourier analytic methods. These Fourier series can be used to analytically continue the functions and prove the classical functional equations, which arise from the relations satisfied by the Fourier conjugate and flat Fourier series. In particular, the functional equation for the Riem...
متن کاملGeometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function
Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.
متن کاملHigh impedance fault detection: Discrete wavelet transform and fuzzy function approximation
This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...
متن کاملA (p, V )-extension of Hurwitz-lerch Zeta Function and Its Properties
In this paper, we define a (p, v)-extension of Hurwitz-Lerch Zeta function by considering an extension of beta function defined by Parmar et al. [J. Classical Anal. 11 (2017) 81106]. We obtain its basic properties which include integral representations, Mellin transformation, derivative formulas and certain generating relations. Also, we establish the special cases of the main results. keywords...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 218 شماره
صفحات -
تاریخ انتشار 2012