Referred phantom sensations and cortical reorganization after spinal cord injury in humans.
نویسندگان
چکیده
To test the hypothesis that cortical remapping supports phantom sensations, we examined referred phantom sensations and cortical activation in humans after spinal-cord injury (SCI) at the thoracic level (T3-T12). Of 12 SCI subjects, 9 reported phantom sensations, and 2 reported referred phantom sensations. In both of these subjects, referred phantom sensations were evoked by contact in reference zones (RZ) that were not adjacent in the periphery and were not predicted to be adjacent in the postcentral gyrus (PoCG), suggesting that representations separated by centimeters of cortical space were simultaneously engaged. This finding was supported by functional MRI (fMRI). In a subject with a T6-level complete SCI, contact in RZ on the left or right forearm projected referred phantom sensations to the ipsilateral chest. During fMRI, contact in either forearm RZ evoked activity in the central PoCG (the position of the forearm representation) and the medial PoCG (the position of the chest representation) with >/=1.6 cm of nonresponsive cortex intervening. In contrast, stimulation in non-RZ forearm and palm regions in this subject and in lesion-matched SCI subjects evoked central but not medial PoCG activation. Our findings support a relation between PoCG activation and the percept of referred phantom sensations. These results, however, present an alternative to somatotopic cortical reorganization, namely, cortical plasticity expressed in coactivation of nonadjacent representations. The observed pattern suggests that somatotopic subcortical remapping, projected to the cortex, can support perceptual and cortical reorganization after deafferentation in humans.
منابع مشابه
Three cases of referred sensation in traumatic nerve injury of the hand: implications for understanding central nervous system reorganization.
OBJECTIVE The aim of this observational study was to explore whether patients with traumatic peripheral nerve injury of the hand perceive referred sensations; sensations that are perceived to emanate from other areas of the body than the part being stimulated. Referred sensations have been reported following amputation, somatosensory deafferentation, local anaesthesia, stroke, brachial plexus a...
متن کاملThe effects of long-standing limb loss on anatomical reorganization of the somatosensory afferents in the brainstem and spinal cord.
We examined the terminations of sensory afferents in the brainstem and spinal cord of squirrel monkeys and prosimian galagos 4-8 years after a therapeutic forelimb or hindlimb amputation within 2 months of birth. In each animal, the distributions of labeled sensory afferent terminations from remaining body parts proximal to the limb stump were much more extensive than in normal animals. These s...
متن کاملPhantom sensations in people with complete spinal cord lesions: a grounded theory perspective.
PURPOSE Phantom sensations are somatic phenomena arising from denervated parts of the body. There is very little research, and much diagnostic confusion, regarding such experiences in people with spinal cord injuries. In the case of 'complete' spinal cord lesions, phantom experiences may challenge, and indeed, contradict, the understanding that both clinicians and patients have of such injuries...
متن کاملCortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling.
Cortical sensory maps can reorganize in the adult brain in an experience-dependent manner. We monitored somatosensory cortical reorganization after sensory deafferentation using functional magnetic resonance imaging (fMRI) in rats subjected to complete transection of the mid-thoracic spinal cord. Cortical representation in response to spared forelimb stimulation was observed to enlarge and inva...
متن کاملRelationship between chronic pain and brain reorganization after deafferentation: A systematic review of functional MRI findings☆
BACKGROUND Mechanisms underlying the development of phantom limb pain and neuropathic pain after limb amputation and spinal cord injury, respectively, are poorly understood. The goal of this systematic review was to assess the robustness of evidence in support of "maladaptive plasticity" emerging from applications of advanced functional magnetic resonance imaging (MRI). METHODS Using MeSH hea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 26 شماره
صفحات -
تاریخ انتشار 2000