Effect of Mass Transport on the Electrochemical Oxidation of Alcohols Over Electrodeposited Film and Carbon-Supported Pt Electrodes
نویسنده
چکیده
Electrochemical oxidation of four different alcohol molecules (methanol, ethanol, n-butanol and 2-butanol) at electrodeposited Pt film and carbon-supported Pt catalyst film electrodes, as well as the effect of mass transport on the oxidation reaction, has been studied systematically using the rotating disk electrode (RDE) technique. It was shown that oxidation current decreased with an increase in the rotation rate (ω) for all alcohols studied over electrodeposited Pt film electrodes. In contrast, the oxidation current was found to increase with an increase in the ω for Pt/C in ethanol and n-butanol-containing solutions. The decrease was found to be nearly reversible for ethanol and n-butanol at the electrodeposited Pt film electrode ruling out the possibility of intermediate COads poisoning being the sole cause of the decrease and was attributed to the formation of soluble intermediate species which diffuse away from the electrode at higher ω. In contrast, an increase in the current with an increase in ω for the carbon supported catalyst may suggest that the increase in residence time of the soluble species within the catalyst layer, results in further oxidation of these species. Furthermore, the reversibility of the peak current on decreasing the ω could indicate that the surface state has not significantly changed due to the sluggish reaction kinetics of ethanol and n-butanol.
منابع مشابه
ELECTROCHEMICAL BEHAVIOR OF GC, Pt AND Au ELECTRODES MODIFIED WITH THIN FILM OF COBALT HEXACYANOFERRATE
0A thin film of cobalt hexacyanoferrate (CoHCF), an analogue of mixed-valence Prussian blue, was deposited electrochemically on the glassy carbon, platinum and gold electrode surfaces in 0.5M KC1 solution. The electrochemical behavior of these modified electrodes show three couples of redox peaks by CV in a supporting electrolyte solution of 0.5M NaCl, whereas for Au modified electrode only ...
متن کاملDesign of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols
We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-c...
متن کاملStudy on Electrochemical Oxidation of m-Nitrophenol on Various Electrodes Using Cyclic Voltammetry
The electrochemical oxidation behavior of m-nitrophenol (m-NP) was studied comparatively on glassy carbon electrode, Pt electrode, PbO2 electrode, SnO2 electrode, and graphite electrode using cyclic voltammetry. The cyclic voltammetry measurements were performed in acidic (1 M H2SO4, pH 0.4), neutral (1 M Na2SO4, pH 6.8), and...
متن کاملKinetic study of CO desorption from cathodic electrochemically treated carbon paper supported Pt electrodes
Platinum particles were grown directly by an electrodeposition process on electrochemically treated carbon paper (CP) for kinetic study of carbon monoxide (CO) desorption. The treatment on CP was performed by applying −2 V for cathodic oxidation over 5 min. Treated CP was characterized by FTIR to investigate the oxygen groups on its surface. CO surface coverage at each temperature was determine...
متن کاملOscillatory behaviour in galvanostatic formaldehyde oxidation on nanostructured Pt/glassy carbon model electrodes.
The electrocatalytic oxidation of formaldehyde, which results in CO(2) and HCOOH formation, was investigated under galvanostatic conditions on nanostructured Pt/glassy carbon (GC) electrodes fabricated by employing colloidal lithography (CL). The measurements were performed on structurally well-defined model electrodes of different Pt surface coverages under different applied currents (current ...
متن کامل