The p - Laplace eigenvalue problem as p → 1 and Cheeger sets in a Finsler metric ∗

نویسندگان

  • B. Kawohl
  • M. Novaga
  • Thomas Lachand-Robert
چکیده

We consider the p–Laplacian operator on a domain equipped with a Finsler metric. After deriving and recalling relevant properties of its first eigenfunction for p > 1, we investigate the limit problem as p → 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The p - Laplace eigenvalue problem as p → ∞ in a Finsler metric

We consider the p-Laplacian operator on a domain equipped with a Finsler metric. We recall relevant properties of its first eigenfunction for finite p and investigate the limit problem as p →∞.

متن کامل

The p - Laplace eigenvalue problem as p → ∞ in a

We consider the p–Laplacian operator on a domain equipped with a Finsler metric. We recall relevant properties of its first eigenfunction for finite p and investigate the limit problem as p → ∞.

متن کامل

Solution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar

The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...

متن کامل

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

Eigenvalues of directed and undirected graphs and their applications

In this thesis, we studied eigenvalues of directed and undirected graphs and their applications. In the first part, a detailed study of the largest eigenvalue of the normalized Laplace operator ∆ for undirected graphs was presented. In contrast to the smallest nontrivial eigenvalue λ1, the largest eigenvalue λn−1 has not been studied systematically before. However, it is well-known that λ1 can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006