Overfitting cautious selection of classifier ensembles with genetic algorithms

نویسندگان

  • Eulanda Miranda dos Santos
  • Robert Sabourin
  • Patrick Maupin
چکیده

Information fusion research has recently focused on the characteristics of the decision profiles of ensemble members in order to optimize performance. These characteristics are particularly important in the selection of ensemble members. However, even though the control of overfitting is a challenge in machine learning problems, much less work has been devoted to the control of overfitting in selection tasks. The objectives of this paper are: (1) to show that overfitting can be detected at the selection stage; and (2) to present strategies to control overfitting. Decision trees and k nearest neighbors classifiers are used to create homogeneous ensembles, while singleand multi-objective genetic algorithms are employed as search algorithms at the selection stage. In this study, we use bagging and random subspace methods for ensemble generation. The classification error rate and a set of diversity measures are applied as search criteria. We show experimentally that the selection of classifier ensembles conducted by genetic algorithms is prone to overfitting, especially in the multi-objective case. In this study, the partial validation, backwarding and global validation strategies are tailored for classifier ensemble selection problem and compared. This comparison allows us to show that a global validation strategy should be applied to control overfitting in pattern recognition systems involving an ensemble member selection task. Furthermore, this study has helped us to establish that the global validation strategy can be used to measure the relationship between diversity and classification performance when diversity measures are employed as single-objective functions. 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overfitting and Diversity in Classification Ensembles based on Feature Selection

This paper addresses Wrapper-like approaches to feature subset selection and the production of classifier ensembles based on members with different feature subsets. The paper starts with the observation that if an insufficient amount of data is used to guide the Wrapper search then the feature selection will overfit the data. If the objective of the feature selection exercise is to build a bett...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

A Fast Scheme for Feature Subset Selection to Avoid Overfitting in AdaBoost

AdaBoost is a well known, effective technique for increasing the accuracy of learning algorithms. However, it has the potential to overfit the training set because its objective is to minimize error on the training set. We show that with the introduction of a scoring function and the random selection of training data it is possible to create a smaller set of feature vectors. The selection of th...

متن کامل

Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information Fusion

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2009