On friendly index sets of cycles with parallel chords
نویسنده
چکیده
Let G be a graph with vertex set V(G) and edge set E(G), and let A be an abelian group. A labeling f: V(G) A induces an edge labeling f"': E(G) A defined by f"'(xy) = f(x) + fey), for each edge xy e E(G). For i e A, let vt<i) = card { v e V(G) : f(v) = i} and er(i) = card ( e e E(G) : f"'(e) = i}. Let c(f) = {Iet<i) etG)1 : (i, j) e A x A}. A labeling f of a graph G is said to be A friendly if I vt<i) Vf(i) I I for all (i, j) e A x A. If c(f) is a (0, I)-matrix for an A-friendly labeling f, then f is said to be A-cordial. When A = 'hz, the.{riendly index set of the graph G, FI(G), is defined as {ler(O) et<I)1 : the vertex labeling f is 'hz-friendly}. In [13] the friendly index set of cycles are completely determined. In this paper we describe the friendly index sets of cycles with parallel chords. We show that for a cycle with an arbitrary non-empty set of parallel chords, the numbers in its friendly index set form an arithmetic progression with common difference 2.
منابع مشابه
Double-crossed chords and distance-hereditary graphs
An early characterization of distance-hereditary graphs is that every cycle of length 5 or more has crossing chords. A new, stronger, property is that in every cycle of length 5 or more, some chord has at least two crossing chords. This new property can be characterized by every block being complete multipartite, and also by the vertex sets of cycles of length 5 or more always inducing 3-connec...
متن کاملOptimization of the Kinematic Sensitivity and the Greatest Continuous Circle in the Constant-orientation Workspace of Planar Parallel Mechanisms
This paper presents the results of a comprehensive study on the efficiency of planar parallel mechanisms, considering their kinetostatic performance and also, their workspace. This aim is approached upon proceeding single- and multi-objective optimization procedures. Kinetostatic performances of ten different planar parallel mechanisms are analyzed by resorting to a recent index, kinematic sens...
متن کاملLabeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملExcluding cycles with a fixed number of chords
Trotignon and Vušković completely characterized graphs that do not contain cycles with exactly one chord. In particular, they show that such a graph G has chromatic number at most max(3, ω(G)). We generalize this result to the class of graphs that do not contain cycles with exactly two chords and the class of graphs that do not contain cycles with exactly three chords. More precisely we prove t...
متن کاملParallel Jobs Scheduling with a Specific Due Date: Asemi-definite Relaxation-based Algorithm
This paper considers a different version of the parallel machines scheduling problem in which the parallel jobs simultaneously requirea pre-specifiedjob-dependent number of machines when being processed.This relaxation departs from one of the classic scheduling assumptions. While the analytical conditions can be easily statedfor some simple models, a graph model approach is required when confli...
متن کامل