Investigation on Microwave Polarimetric Scattering from Two-Dimensional Wind Fetch- and Water Depth-Limited Nearshore Sea Surfaces

نویسندگان

  • Ding Nie
  • Min Zhang
  • Ning Li
چکیده

The microwave polarimetric scattering from two-dimensional (2-D) wind fetchand water depth-limited nearshore sea surface is investigated by using the second-order small-slope approximation (SSA-II). The sea waves are simulated by taking into account the influences of fetch and depth. Based on this, the joint influence of fetch and depth on the normalized radar cross section (NRCS) of sea surfaces for both co-polarizations and cross-polarization in different wind directions is mainly studied. Monostatic and bistatic numerical results both indicate that in the marine environment of small depth and large fetch, the nonlinear interactions among waves become more intense, which has a greater impact on NRCSs for co-polarizations than their cross-polarized counterparts. Comparison of the results for different wind directions also reflects that the backscattered echoes along wind direction have much greater strength, regardless of the magnitude of wind fetch and water depth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sea Surfaces Scattering by Multi-Order Small-Slope Approximation: a Monte-Carlo and Analytical Comparison

L-band electromagnetic scattering from two-dimensional random rough sea surfaces are calculated by first- and second-order Small-Slope Approximation (SSA1, 2) methods. Both analytical and numerical computations are utilized to calculate incoherent normalized radar cross-section (NRCS) in mono- and bi-static cases. For evaluating inverse Fourier transform, inverse fast Fourier transform (IFFT) i...

متن کامل

Airborne Measurements of Oceanic Wind Vector Fields Over the Labrador Sea Using Passive Polarimetric Radiometry

The focus of this research is to develop algorithms and aircraft and satellite remote sensing systems for imaging of ocean surface winds using passive microwave radiometers. The application of passive radiometry to ocean surface imaging, specifically using polarimetric microwave measurements of the third and fourth Stokes' parameters, has been identified as a potentially useful and low-cost mea...

متن کامل

Polarimetric Emission of Rain Events: Simulation and Experimental Results at X-Band

Accurate models are used today for infrared and microwave satellite radiance simulations of the first two Stokes elements in the physical retrieval, data assimilation etc. of surface and atmospheric parameters. Although in the past a number of theoretical and experimental works have studied the polarimetric emission of some natural surfaces, specially the sea surface roughened by the wind (Wind...

متن کامل

Seafloor Topography Modelling in Northern Adriatic Sea Using Synthetic Aperture Radar

Underwater bottom topography may be visible on Synthetic Aperture Radar (SAR) images through the radar signature of ocean surface currents. Using SAR images and a limited number of echo soundings it is possible to constructs accurate depth maps, greatly reducing the costs of bathymetric surveying. Based on shallow water bathymetry synthetic aperture radar (SAR) imaging mechanism and the microwa...

متن کامل

Polarimetric Moclelling of Ocean Backscatter and Brightness Temperatures

There has been an increasing interest in the applications of polarimetric microwave ractiotneters for ocean wind remote sensing. Aircraft and spaceborlle radiometers have found a few Kelvins wind direction signals in sea surface brightness temperatures, in addition to their sensitivities on wind speeds. However, it was not clear what physical scattering rnechanistus produced the observed bright...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014