Development of a cloud microphysical model and parameterizations to describe the effect of CCN on warm cloud

نویسنده

  • N. Kuba
چکیده

First, a hybrid cloud microphysical model was developed that incorporates both Lagrangian and Eulerian frameworks to study quantitatively the effect of cloud condensation nuclei (CCN) on the precipitation of warm clouds. A parcel model and a grid model comprise the cloud model. The condensation growth of CCN in each parcel is estimated in a Lagrangian framework. Changes in cloud droplet size distribution arising from condensation and coalescence are calculated on grid points using a two-moment bin method in a semi-Lagrangian framework. Sedimentation and advection are estimated in the Eulerian framework between grid points. Results from the cloud model show that an increase in the number of CCN affects both the amount and the area of precipitation. Additionally, results from the hybrid microphysical model and Kessler’s parameterization were compared. Second, new parameterizations were developed that estimate the number and size distribution of cloud droplets given the updraft velocity and the number of CCN. The parameterizations were derived from the results of numerous numerical experiments that used the cloud microphysical parcel model. The input information of CCN for these parameterizations is only several values of CCN spectrum (they are given by CCN counter for example). It is more convenient than conventional parameterizations those need values concerned with CCN spectrum, C and k in the equation of N=CS , or, breadth, total number and median radius, for example. The new parameterizations’ predictions of initial cloud droplet size distribution for the bin method were verified by using the aforesaid hybrid microphysical model. The newly developed parameterizations will save computing time, and can effectively approximate components of cloud Correspondence to: N. Kuba ([email protected]) microphysics in a non-hydrostatic cloud model. The parameterizations are useful not only in the bin method in the regional cloud-resolving model but also both for a two-moment bulk microphysical model and for a global model. The effects of sea salt, sulfate, and organic carbon particles were also studied with these parameterizations and global model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New cloud microphysical model and parameterization

Development of a cloud microphysical model and parameterizations to describe the effect of CCN on warm cloud N. Kuba and Y. Fujiyoshi Frontier Research Center for Global Change (FRCGC), Japan Agency for Marin-Earth Science and Technology (JAMSTEC), Yokohama, Japan Frontier Research Center for Global Change (FRCGC), Japan Agency for Marin-Earth Science and Technology (JAMSTEC)/Inst. Low. Temp. S...

متن کامل

Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics

[1] Using the Weather Research and Forecasting model coupled with a spectral-bin microphysics (“SBM”) and measurements from the Atmospheric Radiation Measurement Mobile Facility field campaign in China (AMF-China), the authors examine aerosol indirect effects (AIE) in the typical cloud regimes of the warm and cold seasons in Southeast China: deep convective clouds (DCC) and stratus clouds (SC),...

متن کامل

Effect of hygroscopic seeding on warm rain clouds – numerical study using a hybrid cloud microphysical model

The effect of hygroscopic seeding on warm rain clouds was examined using a hybrid cloud microphysical model combining a Lagrangian Cloud Condensation Nuclei (CCN) activation model, a semi-Lagrangian droplet growth model, and an Eulerian spatial model for advection and sedimentation of droplets. This hybrid cloud microphysical model accurately estimated the effects of CCN on cloud microstructure...

متن کامل

Incorporation of Advanced Aerosol Activation Treatments into CESM / CAM 5 : Model 1 Evaluation and Impacts on Aerosol Indirect Effects 2

12 One of the greatest sources of uncertainty in the science of anthropogenic climate change 13 is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct 14 microphysical link between aerosols and clouds; parameterizations of this process realistically 15 link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small 16 differenc...

متن کامل

Incorporation of Advanced Aerosol Activation Treatments into CESM / CAM 5 : Model 1 Evaluation and Impacts on Aerosol Indirect Effects

12 One of the greatest sources of uncertainty in the science of anthropogenic climate change 13 is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct 14 microphysical linkage between aerosols and clouds; parameterizations of this process link 15 aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small 16 differences between ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006