Scaffold Functions of 14-3-3 Adaptors in B Cell Immunoglobulin Class Switch DNA Recombination
نویسندگان
چکیده
Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.
منابع مشابه
Correction: Scaffold Functions of 14-3-3 Adaptors in B Cell Immunoglobulin Class Switch DNA Recombination
[This corrects the article DOI: 10.1371/journal.pone.0080414.].
متن کاملNon-homologous end joining in class switch recombination: the beginning of the end
Immunoglobulin class switch recombination (CSR) is initiated by a B-cell-specific factor, activation-induced deaminase, probably through deamination of deoxycytidine residues within the switch (S) regions. The initial lesions in the S regions are subsequently processed, resulting in the production of DNA double-strand breaks (DSBs). These breaks will then be recognized, edited and repaired, fin...
متن کاملMutSα Binds to and Promotes Synapsis of Transcriptionally Activated Immunoglobulin Switch Regions
Immunoglobulin class switch recombination joins a new constant (C) region to the rearranged and expressed heavy chain variable (VDJ) region in antigen-activated B cells (Figure 1A) (reviewed in [1, 2]). Switch recombination is activated by transcription of intronic, G-rich and repetitive switch (S) regions and produces junctions that are heterogeneous in sequence and position in the S regions. ...
متن کاملActivities of human exonuclease 1 that promote cleavage of transcribed immunoglobulin switch regions.
Eukaryotic exonuclease 1 functions in replication, recombination, mismatch repair, telomere maintenance, immunoglobulin (Ig) gene class switch recombination, and somatic hypermutation. The enzyme has 5'-3' exonuclease, flap endonuclease, and weak RNaseH activity in vitro, but it has been difficult to reconcile these activities with its diverse biological functions. We report robust cleavage by ...
متن کاملPARP-3 and APLF function together to accelerate nonhomologous end-joining.
PARP-3 is a member of the ADP-ribosyl transferase superfamily of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA DSB repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the retention of XRCC4/...
متن کامل