Weak and Strong Convergence of Algorithms for the Split Common Null Point Problem
نویسندگان
چکیده
We introduce and study the Split Common Null Point Problem (SCNPP) for set-valued maximal monotone mappings in Hilbert space. This problem generalizes our Split Variational Inequality Problem (SVIP) [Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numerical Algorithms, accepted for publication, DOI 10.1007/s11075-011-9490-5]. The SCNPP with only two set-valued mappings entails finding a zero of a maximal monotone mapping in one space, the image of which under a given bounded linear transformation is a zero of another maximal monotone mapping. We present three iterative algorithms that solve such problems in Hilbert
منابع مشابه
Strong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms
Our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove a strong convergence theorem for approximating a solution of split equality fixed point problem for quasi-nonexpansive mappings in a real Hilbert space. So many have used algorithms involving the operator norm for solving split equality fixed point problem, ...
متن کاملMultidirectional hybrid algorithm for the split common fixed point problem and application to the split common null point problem
In this article, a new multidirectional monotone hybrid iteration algorithm for finding a solution to the split common fixed point problem is presented for two countable families of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems are proved. The application of the result is to consider the split common null point problem of maximal monotone operators in Banach spaces. ...
متن کاملStrong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings
In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...
متن کاملStrong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings
In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space with a uniformly G$hat{a}$teaux differentiable norm. Our result is applicable in $L_{p}(ell_{p})$ spaces, $1 < p
متن کاملWeak and strong convergence theorems for a finite family of generalized asymptotically quasinonexpansive nonself-mappings
In this paper, we introduce and study a new iterative scheme toapproximate a common xed point for a nite family of generalized asymptoticallyquasi-nonexpansive nonself-mappings in Banach spaces. Several strong and weakconvergence theorems of the proposed iteration are established. The main resultsobtained in this paper generalize and rene some known results in the currentliterature.
متن کامل