Bacterial turgor pressure can be measured by atomic force microscopy.

نویسندگان

  • M Arnoldi
  • M Fritz
  • E Bäuerlein
  • M Radmacher
  • E Sackmann
  • A Boulbitch
چکیده

We report a study of the deformability of a bacterial wall with an atomic force microscope (AFM). A theoretical expression is derived for the force exerted by the wall on the cantilever as a function of the depths of indentation generated by the AFM tip. Evidence is provided that this reaction force is a measure for the turgor pressure of the bacterium. The method was applied to magnetotactic bacteria of the species Magnetospirillum gryphiswaldense. Force curves were generated on the substrate and on the bacteria while scanning laterally. With the mechanical properties so gained we obtained the spring constant of the bacterium as a whole. Making use of our theoretical results we determined the turgor pressure to be in the range of 85 to 150 kPa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells.

We study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. We find strong evidence of power-law stress stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E=23±8  MPa and 49±20  MPa in the axial and c...

متن کامل

Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy.

Atomic force microscopy was used to measure the thickness of air-dried, collapsed murein sacculi from Escherichia coli K-12 and Pseudomonas aeruginosa PAO1. Air-dried sacculi from E. coli had a thickness of 3.0 nm, whereas those from P. aeruginosa were 1.5 nm thick. When rehydrated, the sacculi of both bacteria swelled to double their anhydrous thickness. Computer simulation of a section of a m...

متن کامل

Cellular force microscopy for in vivo measurements of plant tissue mechanics.

Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we h...

متن کامل

Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci

Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing tu...

متن کامل

The interplay between cell wall mechanical properties and the cell cycle in Staphylococcus aureus.

The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 62 1 Pt B  شماره 

صفحات  -

تاریخ انتشار 2000