On the analysis of pure bending of rigid-plastic beams in strain-gradient plasticity

نویسنده

  • Vlado A. Lubarda
چکیده

The complete stress field, including the microstress, the moment-stress, and the line forces are derived for the pure bending of a rigid-plastic beam of rectangular cross-section in the model of strain-gradient plasticity. The workless spherical parts of the microstress and the moment-stress tensors are incorporated in the analysis. Their determination is shown to be of importance for the fulfilment of the higherorder traction boundary conditions, the physical interpretation of line forces, and their contributions to bending moments. Three equivalent methods are used to derive the moment-curvature relationship for any of the gradient-enhanced effective plastic strain measures from the considered broad class of these measures. Specific results are given for the selected choice of the stress-strain relationship describing the uniaxial tension test. Closed-form analytical expressions are obtained in the case of linear hardening, and in some cases of nonlinear hardening. The analysis of the plane-strain bending of thin foils is also presented. In this case there are two sets of line forces along the edges of the beam. The relationships between the applied bending moment and the curvature, and between the lateral bending moment and the curvature are derived and discussed. The lateral bending moment along the lateral sides of the beam, needed to keep the plane-strain mode of deformation, is one-half of the applied bending moment. © 2016 Elsevier Masson SAS. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic Behavior of Beams Based on the Chaboche Unified Viscoplastic Model

In this paper, ratcheting behavior of beams subjected to mechanical cyclic loads at elevated temperature, using the rate dependent Chaboche unified viscoplastic model with combined kinematic and isotropic hardening theory of plasticity, is investigated. A precise and general numerical scheme, using the incremental method of solution, is developed to obtain the cyclic inelastic creep and plastic...

متن کامل

Mechanism-based strain gradient plasticityÐII. Analysis

A mechanism-based theory of strain gradient (MSG) plasticity has been proposed in Part I of this paper. The theory is based on a multiscale framework linking the microscale notion of statistically stored and geometrically necessary dislocations to the mesoscale notion of plastic strain and strain gradient. This theory is motivated by our recent analysis of indentation experiments which strongly...

متن کامل

U-Bending Analysis with an Emphasis on Influence of Hardening Models

In this paper the effect of different hardening models in simulating the U-bending process for AA5754-O and DP-Steel, taking a benchmark of NUMISHEET 93 2-D draw bending, has been discussed. The hardening models considered in simulations are: isotropic hardening, pure (linear) kinematic hardening and combined (nonlinear kinematic) hardening. The influence of hardening models on predicting sprin...

متن کامل

Strain Hardening Analysis for M-P Interaction in Metallic Beam of T-Section

This paper derives kinematic admissible bending moment – axial force (M-P) interaction relations for mild steel by considering strain hardening idealisations. Two models for strain hardening – Linear and parabolic have been considered, the parabolic model being closer to the experiments. The interaction relations can predict strains, which is not possible in a rigid, perfectly plastic idealizat...

متن کامل

Elastoplastic Analysis of Functionally Graded Beams under Mechanical Loads

Elastic-plastic behavior of a beam made of functionally graded material is investigated in this work‎. ‎The beam is subjected to the constant axial and bending loads and the critical values of these loads for yield‎, ‎collapse and elastic-plastic conditions are obtained‎. ‎The variation of elastic modulus and yield strength through the height of the beam is determined with an exponential rule‎....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017