Interpretability issues in data-based learning of fuzzy systems

نویسندگان

  • Ralf Mikut
  • Jens Jäkel
  • Lutz Gröll
چکیده

This paper presents amethod for an automatic and complete design of fuzzy systems fromdata. Themain objective is to build fuzzy systems with a user-controllable trade-off between accuracy and interpretability. Whereas criteria for accuracy mostly follow straightforwardly from the application, definition of interpretability and its criteria are subject to controversial discussion. For this reason, a set of interpretability criteria is given which guide the design process. Consequently, interpretability is maintained by structural choices regarding the type of membership functions, rules, and inference mechanism, on the one hand, and by including interpretability criteria in the rule/rule base evaluation, on the other hand. An application in Instrumented Gait Analysis, to characterize a certain group of patients in comparison to healthy subjects, illustrates the proposed algorithm. © 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NOTE TO INTERPRETABLE FUZZY MODELS AND THEIR LEARNING

In this paper we turn the attention to a well developed theory of fuzzy/lin-guis-tic models that are interpretable and, moreover, can be learned from the data.We present four different situations demonstrating both interpretability as well as learning abilities of these models.

متن کامل

On the Capability of a Fuzzy Inference System with Improved Interpretability

Many studies on modeling of fuzzy inference systems have been made. The issue of these studies is to construct automatically fuzzy systems with interpretability and accuracy from learning data based on meta-heuristic methods. Since accuracy and interpretability are contradicting issues, there are some disadvantages for self-tuning method. Obvious drawbacks of the method are lack of interpretabi...

متن کامل

Approximation Capabilities of Interpretable Fuzzy Inference Systems

Many studies on modeling of fuzzy inference systems have been made. The issue of these studies is to construct automatically fuzzy inference systems with interpretability and accuracy from learning data based on metaheuristic methods. Since accuracy and interpretability are contradicting issues, there are some disadvantages for self-tuning method by metaheuristic methods. Obvious drawbacks of t...

متن کامل

Improving the Interpretability of Support Vector Machines-based Fuzzy Rules

Support vector machines (SVMs) and fuzzy rule systems are functionally equivalent under some conditions. Therefore, the learning algorithms developed in the field of support vector machines can be used to adapt the parameters of fuzzy systems. Extracting fuzzy models from support vector machines has the inherent advantage that the model does not need to determine the number of rules in advance....

متن کامل

Construction of Fuzzy Systems –Interplay between Precision and Transparency

In recent years, we have witnessed a strong emphasis on high performance and precision of fuzzy systems. Many publications are focused on data driven approaches, i.e., the construction of fuzzy systems from data and applying them in areas like data mining, pattern recognition, prediction or control. In such applications, fuzzy system inevitably must be compared with other inductive methods, lik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2005