Inhibition of complement-mediated opsonization and phagocytosis of Streptococcus pyogenes by D fragments of fibrinogen and fibrin bound to cell surface M protein
نویسندگان
چکیده
The biological effects of the binding of fibrin(ogen) degradation products to M protein-bearing group A streptococci were investigated. Type 24 group A streptococci bind fibrinogen degradation products of the D family, but not fragment E. Binding appears to be mediated by M protein, since a large peptide of this molecule (pep M24) bound to fragments containing the terminal domains of the fibrinogen molecule (D, X, and Y), but not fragment E, and pep M24 inhibited the binding of digested fibrinogen to streptococcal cells. An M protein-binding site occurs on fragment D3 and, therefore, differs from several functional sites present on D1 but not D3, including the fibrin polymerization site, the two gamma chain crosslink sites, and the bindings sites for platelet fibrinogen receptor, staphylococcal clumping factor, and ionized calcium. Bound fibrinogen degradation products prevented deposition of C3 on the streptococcal cell surface, and, in consequence, prevented phagocytosis by neutrophils in nonimmune blood. The average affinity of D fragments for the streptococcal cell surface was approximately 30 times lower than that of native fibrinogen, and a terminal plasmic digest was approximately 50 times less potent in inhibiting opsonization by C3. However, physiologic concentrations of digested fibrinogen sufficed to inhibit opsonization and phagocytosis completely. Digests of crosslinked fibrin clot also inhibited opsonization, although slightly less effectively than did fibrinogen digests. The antiopsonic effect of fibrin(ogen) degradation products may be relevant to circumstances in which fibrin(ogen)olysis is occurring, e.g., exudation and suppuration.
منابع مشابه
Potentiation of opsonization and phagocytosis of Streptococcus pyogenes following growth in the presence of clindamycin.
Streptococcus pyogenes, bearing M-protein on its surface, resists opsonization by normal human serum and subsequent phagocytosis by human polymorphonuclear leukocytes. Previous studies have shown that M-protein positive organisms are poorly opsonized by the alternate pathway of complement. In an attempt to define further the role of the surface components of S. pyogenes in this process, we exam...
متن کاملAcquisition of regulators of complement activation by Streptococcus pyogenes serotype M1.
Opsonization of bacteria by complement proteins is an important component of the immune response. The pathogenic bacterium Streptococcus pyogenes has evolved multiple mechanisms for the evasion of complement-mediated opsonization. One mechanism involves the binding of human regulators of complement activation such as factor H (FH) and FH-like protein 1 (FHL-1). Acquisition of these regulatory p...
متن کاملHuman fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway.
Human fibrinogen (Fg) binds to surface proteins expressed by many pathogenic bacteria and has been implicated in different host-pathogen interactions, but the role of bound Fg remains unclear. Here, we analyse the role of Fg bound to Streptococcus pyogenes M protein, a major virulence factor that confers resistance to phagocytosis. Studies of the M5 system showed that a chromosomal mutant lacki...
متن کاملPlasmin(ogen) acquisition by group A Streptococcus protects against C3b-mediated neutrophil killing.
The globally significant human pathogen group A Streptococcus (GAS) sequesters the host protease plasmin to the cell surface during invasive disease initiation. Recent evidence has shown that localized plasmin activity prevents opsonization of several bacterial species by key components of the innate immune system in vitro. Here we demonstrate that plasmin at the GAS cell surface resulted in de...
متن کاملDegradation of complement 3 by streptococcal pyrogenic exotoxin B inhibits complement activation and neutrophil opsonophagocytosis.
Streptococcal pyrogenic exotoxin B (SPE B), a cysteine protease, is an important virulence factor in group A streptococcus (GAS) infection. The inhibition of phagocytic activity by SPE B may help prevent bacteria from being ingested. In this study, we examined the mechanism SPE B uses to enable bacteria to resist opsonophagocytosis. Using an enzyme-linked immunosorbent assay, we found that SPE ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 162 شماره
صفحات -
تاریخ انتشار 1985