Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization.

نویسندگان

  • Rui-Qing Sun
  • Yi-Jun Tu
  • Nada B Lawand
  • Jing-Yin Yan
  • Qing Lin
  • William D Willis
چکیده

Calcitonin gene-related peptide (CGRP), acting through CGRP receptors, produces behavioral signs of mechanical hyperalgesia in rats and sensitization of wide dynamic range (WDR) neurons in the spinal cord dorsal horn. Although involvement of CGRP receptors in central sensitization has been confirmed, the second-messenger systems activated by CGRP receptor stimulation and involved in pain transmission are not clear. This study tested whether the hyperalgesia and sensitizing effects of CGRP receptor activation on WDR neurons are mediated by protein kinase A or C (PKA or PKC) signaling. Intrathecal injection of CGRP in rats produced mechanical hyperalgesia, as shown by paw withdrawal threshold tests. CGRP-induced hyperalgesia was attenuated significantly by the CGRP1 receptor antagonist, CGRP8-37. The effect was also attenuated significantly by a PKA inhibitor (H89) or a PKC inhibitor (chelerythrine chloride). Electrophysiological experiments demonstrated that superfusion of the spinal cord with CGRP-induced sensitization of spinal dorsal horn neurons. The CGRP effect could be blocked by CGRP8-37. Either a PKA or PKC inhibitor (H89 or chelerythrine) also attenuated this effect of CGRP. These results are consistent with the hypothesis that CGRP produces hyperalgesia by a direct action on CGRP1 receptors in the spinal cord dorsal horn and suggest that the effects of CGRP are mediated by both PKA and PKC second-messenger pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice.

Exacerbated sensitivity to mechanical stimuli that are normally innocuous or mildly painful (mechanical allodynia and hyperalgesia) occurs during inflammation and underlies painful diseases. Proteases that are generated during inflammation and disease cleave protease-activated receptor 2 (PAR2) on afferent nerves to cause mechanical hyperalgesia in the skin and intestine by unknown mechanisms. ...

متن کامل

Calcitonin Gene-Related Peptide Promotes Peripheral and Central Trigeminal Sensitization

Temporomandibular joint disorder is characterized by peripheral and central sensitization of trigeminal nociceptive neurons. Although CGRP is implicated in the development of central sensitization by stimulating glial activation via its receptor, the mechanism by which CGRP promotes and maintains sensitization of trigeminal nociceptive neurons is not well understood. The goal of my study was to...

متن کامل

Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators

BACKGROUND Streptozotocin (STZ) is used as a common tool to induce diabetes and to study diabetes-induced complications including diabetic peripheral neuropathy (DPN). Previously, we have reported that STZ induces a direct effect on neurons through expression and function of the Transient receptor potential vanilloid 1 (TRPV1) channel in sensory neurons resulting in thermal hyperalgesia, even i...

متن کامل

Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia.

Inflammatory proteases (mast cell tryptase and trypsins) cleave protease-activated receptor 2 (PAR2) on spinal afferent neurons and cause persistent inflammation and hyperalgesia by unknown mechanisms. We determined whether transient receptor potential vanilloid receptor 1 (TRPV1), a cation channel activated by capsaicin, protons, and noxious heat, mediates PAR2-induced hyperalgesia. PAR2 was c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 5  شماره 

صفحات  -

تاریخ انتشار 2004