ACCELERATION OF GMRES CONVERGENCE FOR SOME CFD PROBLEMS: preconditioning and stabilization techniques
نویسندگان
چکیده
Large CFD problems are often solved using iterative methods. Preconditioning is mandatory to accelerate the convergence of iterative methods. This paper presents new results using several preconditioning techniques. These preconditoners are non-standard in the CFD community. Several numerical tests were carried out for solving three-dimensional incompressible, compressible and magneto-hydrodynamic (MHD) problems. A selection of numerical results is presented showing in particular that the Flexible GMRES algorithm preconditioned with ILUT factorization provides a very robust iterative solver.
منابع مشابه
Steepest Descent Preconditioning for Nonlinear GMRES Optimization
Steepest descent preconditioning is considered for the recently proposed nonlinear generalized minimal residual (N-GMRES) optimization algorithm for unconstrained nonlinear optimization. Two steepest descent preconditioning variants are proposed. The first employs a line search, while the second employs a predefined small step. A simple global convergence proof is provided for the NGMRES optimi...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملAcceleration of Turbomachinery Steady Simulations on GPU
Steady state simulations in Computational Fluid Dynamics (CFD), which rely on implicit time integration, are not experiencing great accelerations on GPUs. Moreover, most of the reported acceleration effort concerns solving the linear system of equations while neglecting the acceleration potential of running the entire simulation on the GPU. In this paper, we present the software implementation ...
متن کاملAn Investigation into Preconditioning Iterative Solvers for Hydrodynamic Problems
Two Krylov subspace iterative methods, GMRES and QMR, were studied in conjunction with several preconditioning techniques for solving the linear system raised from the finite element discretisation of incompressible Navier-Stokes equations for hydrodynamic problems. The preconditioning methods under investigation were the incomplete factorisation methods such as ILU(0) and MILU, the Stokes prec...
متن کاملConvergence analysis of the global FOM and GMRES methods for solving matrix equations $AXB=C$ with SPD coefficients
In this paper, we study convergence behavior of the global FOM (Gl-FOM) and global GMRES (Gl-GMRES) methods for solving the matrix equation $AXB=C$ where $A$ and $B$ are symmetric positive definite (SPD). We present some new theoretical results of these methods such as computable exact expressions and upper bounds for the norm of the error and residual. In particular, the obtained upper...
متن کامل