Dynamics and Stability of Multilayered Recurrent Neural Networks
نویسندگان
چکیده
The dynamical analysis of a novel multilayered recurrent neural network (MRNN) is addressed in this paper. The dynamics of the MRNN are represented by a multi-input and multi-output nonlinear difference equation. The existence and stability of the equilibrium points of the MRNN are then discussed, and sufficient conditions of absolute stable are derived.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملAdaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملNecessary Conditions for Stability of Solutions in Recurrent Neural Networks
A procedure that defines values of constraint weight parameters of single-layer relaxation-type recurrent neural networks for establishing stability of all solutions for an optimization problem is introduced. Application to the Traveling Salesman optimization problem, using the discrete dynamics Hopfield network as the recurrent neural network algorithm, is shown to illustrate the procedure. Si...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کامل