A Fuzzy Support Vector Machine Algorithm with Dual Membership Based on Hypersphere
نویسندگان
چکیده
In traditional fuzzy support vector machine(FSVM), membership function is established in global scope will reduce the membership of support vectors, and the FSVM based dismissing margin increases the training speed, but will remove some support vector artificially. So, a new algorithm of Fuzzy Support Vector Machine with Dual Membership based on Hypersphere (HDM-FSVM) is proposed. In this algorithm, the two classes of hyperspheres are divided into two parts respectively. Then, according to most support vectors are in the hemispheres which close together, we use the membership function that can enhance the membership of support vector, and because of there are a few of support vectors in other hemispheres, we must ensure the high membership of support vectors and reduce the membership of non-support vector. In order to removal noise and outliers, we introduce a radius controlling factor to control size of hyperspheres, the samples that outside of hyperspheres are considered as noise and outliers. Experimental results show that HDM-FSVM can enhance the classification accuracy rate of the sample sets that contain noise and outliers.
منابع مشابه
Robustified distance based fuzzy membership function for support vector machine classification
Fuzzification of support vector machine has been utilized to deal with outlier and noise problem. This importance is achieved, by the means of fuzzy membership function, which is generally built based on the distance of the points to the class centroid. The focus of this research is twofold. Firstly, by taking the advantage of robust statistics in the fuzzy SVM, more emphasis on reducing the im...
متن کاملروشی جدید برای عضویتدهی به دادهها و شناسایی نوفه و دادههای پرت با استفاده از ماشین بردار پشتیبان فازی
Support Vector Machine (SVM) is one of the important classification techniques, has been recently attracted by many of the researchers. However, there are some limitations for this approach. Determining the hyperplane that distinguishes classes with the maximum margin and calculating the position of each point (train data) in SVM linear classifier can be interpreted as computing a data membersh...
متن کاملA Least Squares Support Vector Machine Sparseness Algorithm
Abstract This paper proposes a method which using density index function to sparse LS-SVM in highdimensional feature space, and gives a new method which takes each sample point as a clustering center to make hypersphere, so as to determine the fuzzy membership function in high-dimensional feature space, thus to establish a new fuzzy least squares support vector machine model, So it is different...
متن کاملA Fuzzy Support Tensor Machines based on Support Vector Data Description
Most of the traditional machine learning algorithms are based on the vector, but in tensor space, Tensor learning is helpful to overcome the over-fitting problem than vector learning. In the meanwhile, these algorithms based on tensor require a smaller set of decision variables as compared to those approaches based on vector. Support tensor machine (STM) is a prevalent machine learning approach...
متن کاملA Double Margin Based Fuzzy Support Vector Machine Algorithm
Although fuzzy support vector machine introduces the fuzzy membership degree in maximizing the margin and improves performance of classifier, it has not fully considered the position of training samples in the margin. In this paper, a double margin (rough margin) based fuzzy support vector machine (RFSVM) algorithm is presented by introducing rough set into fuzzy support vector machine. Firstly...
متن کامل