Transforming Musical Signals through a Genre Classifying Convolutional Neural Network
نویسندگان
چکیده
Convolutional neural networks (CNNs) have been successfully applied on both discriminative and generative modeling for music-related tasks. For a particular task, the trained CNN contains information representing the decision making or the abstracting process. One can hope to manipulate existing music based on this “informed” network and create music with new features corresponding to the knowledge obtained by the network. In this paper, we propose a method to utilize the stored information from a CNN trained on musical genre classification task. The network was composed of three convolutional layers, and was trained to classify five-second song clips into five different genres. After training, randomly selected clips were modified by maximizing the sum of outputs from the network layers. In addition to the potential of such CNNs to produce interesting audio transformation, more information about the network and the original music could be obtained from the analysis of the generated features since these features indicate how the network “understands” the music.
منابع مشابه
Music Genre Classification with Paralleling Recurrent Convolutional Neural Network
Deep learning has been demonstrated its effectiveness and efficiency in music genre classification. However, the existing achievements still have several shortcomings which impair the performance of this classification task. In this paper, we propose a hybrid architecture which consists of the paralleling CNN and Bi-RNN blocks. They focus on spatial features and temporal frame orders extraction...
متن کاملDeep Image Features in Music Information Retrieval
Applications of Convolutional Neural Networks (CNNs) to various problems have been the subject of a number of recent studies ranging from image classification and object detection to scene parsing, segmentation 3D volumetric images and action recognition in videos. CNNs are able to learn input data representation, instead of using fixed engineered features. In this study, the image model traine...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملLyrics-Based Music Genre Classification Using a Hierarchical Attention Network
Music genre classification, especially using lyrics alone, remains a challenging topic in Music Information Retrieval. In this study we apply recurrent neural network models to classify a large dataset of intact song lyrics. As lyrics exhibit a hierarchical layer structure—in which words combine to form lines, lines form segments, and segments form a complete song—we adapt a hierarchical attent...
متن کاملExplaining Deep Convolutional Neural Networks on Music Classification
Deep convolutional neural networks (CNNs) have been actively adopted in the field of music information retrieval, e.g. genre classification, mood detection, and chord recognition. However, the process of learning and prediction is little understood, particularly when it is applied to spectrograms. We introduce auralisation of a CNN to understand its underlying mechanism, which is based on a dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.09553 شماره
صفحات -
تاریخ انتشار 2017