Multiscale continuum modeling of a crack in elastic media with microstructures

نویسندگان

  • G. L. Huang
  • C. T. Sun
چکیده

Cosserat type continuum theories have been employed bymany authors to study cracks in elastic solids with microstructures. Depending on which theory was used, different crack tip stress singularities have been obtained. In this paper, a microstructure continuum theory is used to model a layered elastic medium containing a crack parallel to the layers. The crack problem is solved by means of the Fourier transform. The resulting integrodifferential equations are discretized using the Chebyshev polynomial expansion method for numerical solutions. By using the present theory, the explicit internal length effects upon the crack opening displacement and stress field can be observed. It is found that the stress field near the crack tip is not singular according to themicrostructure continuum solution although the level of the opening stress shows an increasing trend until it gets very close to the crack tip. The rising portion of the near tip opening stress is used to project the stress intensity factor which agrees fairlywell with that obtained using the FEM to perform stress analyses of the cracked layered medium with the exact geometry. The numerical solutions also indicate that treating the layered medium as an equivalent homogeneous classical elastic solid is not G. L. Huang Department of Systems Engineering, University of Arkansas at Little Rock, Little Rock, AR 72204, USA C. T. Sun (B) School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, USA e-mail: [email protected] adequate if cracks are present and accurate stress intensity factors in the original layered medium is desired.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation

This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

Propagation of Crack in Linear Elastic Materials with Considering Crack Path Correction Factor

Modeling of crack propagation by a finite element method under mixed mode conditions is of prime importance in the fracture mechanics. This article describes an application of finite element method to the analysis of mixed mode crack growth in linear elastic fracture mechanics. Crack - growth process is simulated by an incremental crack-extension analysis based on the maximum principal stress c...

متن کامل

Temperature-related Cauchy–Born rule for multiscale modeling of crystalline solids

In this study, we develop a temperature-related Cauchy–Born (TCB) rule for multiscale modeling of crystalline solids based on the assumptions that deformation is locally homogeneous and atoms have the same local vibration mode. When employing the TCB rule in the nanoscale continuum approximation, the first Piola–Kirchhoff stress can be explicitly computed as the first derivative of the Helmholt...

متن کامل

Numerical modeling and comparison study of elliptical cracks effect on the pipes straight and with thickness transition exposed to internal pressure, using XFEM in elastic behavior.

The present work deals with the effect of an external circumferential elliptical crack located at thickness transition on a varied stepped diameter pipe . The purpose is the application of the extended finite element method (XFEM) for the calculation of SIF at the thickness transition region of pipe considering internal pressure and compare the effect of the crack between pipes straight and wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009