A derivative-free trust-region augmented Lagrangian algorithm

نویسندگان

  • Charles Audet
  • Sébastien Le Digabel
  • Mathilde Peyrega
چکیده

We present a new derivative-free trust-region (DFTR) algorithm to solve general nonlinear constrained problems with the use of an augmented Lagrangian method. No derivatives are used, neither for the objective function nor for the constraints. An augmented Lagrangian method, known as an effective tool to solve equality and inequality constrained optimization problems with derivatives, is exploited to minimize the subproblems, composed of quadratic models that approximate the original objective function and constraints, within a trust region. The trust region ratio which leads the classical update rules for the trust region radius is defined by comparing the true decrease of the augmented Lagrangian merit function with the expected decrease. This mechanism allows to reuse the basic unconstrained DFTR update rules with minor modifications. Computational experiments on a set of analytical problems suggest that our approach outperforms HOPSPACK and is competitive with COBYLA. Using an augmented Lagrangian, and more generally a merit function, to design the DFTR update rules with constraints is shown to be an efficient technique. ∗This work was supported in part by NSERC grant RGPIN-2015-05311. †GERAD and Département de mathématiques et génie industriel, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7. www.gerad.ca/Charles.Audet, www.gerad.ca/Sebastien.Le.Digabel, [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Environmental/Economic Power Dispatch Problem by a Trust Region Based Augmented Lagrangian Method

This paper proposes a Trust-Region Based Augmented Method (TRALM) to solve a combined Environmental and Economic Power Dispatch (EEPD) problem. The EEPD problem is a multi-objective problem with competing and non-commensurable objectives. The TRALM produces a set of non-dominated Pareto optimal solutions for the problem. Fuzzy set theory is employed to extract a compromise non-dominated sol...

متن کامل

A trust-region derivative-free algorithm for constrained optimization

We propose a trust-region algorithm for constrained optimization problems in which the derivatives of the objective function are not available. In each iteration, the objective function is approximated by a model obtained by quadratic interpolation, which is then minimized within the intersection of the feasible set with the trust region. Since the constraints are handled in the trust-region su...

متن کامل

CONORBIT: constrained optimization by radial basis function interpolation in trust regions

This paper presents CONORBIT, a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions and is an extension of the ORBIT algorithm (Wild, Regis, and Shoemaker 2008). It...

متن کامل

Adaptive Augmented Lagrangian Methods for Large-Scale Equality Constrained Optimization

We propose an augmented Lagrangian algorithm for solving large-scale equality constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the cor...

متن کامل

A Trust Region Algorithm for Solving Nonlinear Equations (RESEARCH NOTE)

This paper presents a practical and efficient method to solve large-scale nonlinear equations. The global convergence of this new trust region algorithm is verified. The algorithm is then used to solve the nonlinear equations arising in an Expanded Lagrangian Function (ELF). Numerical results for the implementation of some large-scale problems indicate that the algorithm is efficient for these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016