Edge and Line Feature Extraction Based on Covariance Models

نویسنده

  • Ferdinand van der Heijden
چکیده

Image segmentation based on contour extraction usually involves three stages of image operations: feature extraction, edge detection and edge linking. This paper is devoted to the first stage: a method to design feature extractors used to detect edges from noisy and/or blurred images. The method relies on a model that describes the existence of image discontinuities (e.g. edges) in terms of covariance functions. The feature extractor transforms the input image into a “log-likelihood ratio” image. Such an image is a good starting point of the edge detection stage since it represents a balanced trade-off between signal-to-noise ratio and the ability to resolve detailed structures. For 1-D signals, the performance of the edge detector based on this feature extractor is quantitatively assessed by the so called “average risk measure.” The results are compared with the performances of 1-D edge detectors known from literature. Generalizations to 2-D operators are given. Applications on real world images are presented showing the capability of the covariance model to build edge and line feature extractors. Finally it is shown that the covariance model can be coupled to a MRF-model of edge configurations so as to arrive at a maximum a posteriori estimate of the edges or lines in the image. Index Items Edge detection, line detection, image processing, image segmentation, feature extraction, MRF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contourlet-Based Edge Extraction for Image Registration

Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...

متن کامل

Face Segregation and Recognition by Cortical Multi-scale Line and Edge Coding

Models of visual perception are based on image representations in cortical area V1 and higher areas which contain many cell layers for feature extraction. Basic simple, complex and end-stopped cells provide input for line, edge and keypoint detection. In this paper we present an improved method for multi-scale line/edge detection based on simple and complex cells. We illustrate the line/edge re...

متن کامل

جاسازی خط ویژگی وزن‌دار برای استخراج ویژگی تصاویر ابرطیفی

One of the most preprocessing steps before the classification of hyperspectral images is supervised feature extraction. Because obtaining the training samples is hard and time consuming, the number of available training samples is limited. We propose a supervised feature extraction method in this paper that is efficient in small sample size situation. The proposed method, which is called weight...

متن کامل

Contours Extraction Using Line Detection and Zernike Moment

Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...

متن کامل

Study on 3d Textured Building Model Based on Ads40 Image and 3d Model

An automatic method of 3D textured building modelling with an airborne linear scanner sensor image and 3D model is proposed, which includes to extract buildings’ feature from image, to match the extracted feature with 3D mode and to map texture according to the correspondence between image and model. Feature extraction from image and feature matching with 3D model are two key steps to build 3D ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1995