CS 195 - 5 : Machine Learning Problem Set 1

نویسنده

  • Douglas Lanman
چکیده

Show that the prediction errors y − f (x; ˆ w) are necessarily uncorrelated with any linear function of the training inputs. That is, show that for any a ∈ R d+1ˆσ(e, a T x) = 0, where e i = y i − ˆ w T x i is the prediction error for the i th training example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CS 195 - 5 : Machine Learning Problem Set 6

For this problem we assume that the set of training examples {(xi, yi)} are drawn from two classes such that yi = ±1. For such two-class classifcation problems, the form of yihm(xi) is particularly simple; if an example is correctly classified, then yihm(xi) = 1. If an example is misclassified, then yihm(xi) = −1. As a result, Equation 3 can be decomposed as Zm = W (m−1) + e −αm + W (m−1) − e α...

متن کامل

CS 195 - 5 : Machine Learning Problem Set 5

Let’s begin by briefly reviewing the Matlab routines required for VQ-based image compression. First, note that the VQ parameters are set on lines 13-19 of prob1.m. The general VQ framework is implemented by learnVQ.m, which uses the subroutine kmeans.m to implement the k-means algorithm. (Note that, as recommended, we use findnn.m and lpnorm.m within the k-means implementation to allow flexible...

متن کامل

CS 195 - 5 : Machine Learning Problem Set 4

Let’s begin by examining the general structure of trainSVM.m: the skeleton code which implements SVM training. On lines 20-23 the training samples in data are parsed. On lines 25-29 we evaluate an arbitrary kernel matrix (specified by the user as kernel with a single parameter param). Next, on lines 31-61 we apply Matlab’s built-in quadratic programming quadprog routine to determine the support...

متن کامل

University of Pittsburgh Cs 2750 Machine Learning Handout 3 Professor Milos Hauskrecht Solutions to Problem Set 3 Problem 1. Linear Regression Part 1. Exploratory Data Analysis

(a) Attribute 4, CHAS, is the only binary attribute. (b) Attribute 13—LSTAT—has the highest negative correlation and attribute 6—RM—has the highest positive correlation with the target attribute.

متن کامل

Prediction using Machine Learned Constraint Satisfaction Programs

Prediction is a well-researched area for Machine Learning applications. In these tasks, the aim is to predict the value for some unseen characteristic based upon the values of other, seen, characteristics for a given example. Machine learning has been extensively applied to these types of tasks by automating the derivation of a predictive function or a set of predictive rules. This predictive f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006