Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice.
نویسندگان
چکیده
Vitamin D plays an important role in Ca(2+) homeostasis by controlling Ca(2+) (re)absorption in intestine, kidney, and bone. The epithelial Ca(2+) channel TRPV5 mediates the Ca(2+) entry step in active Ca(2+) reabsorption. TRPV5 knockout (TRPV5(-/-)) mice show impaired Ca(2+) reabsorption, hypercalciuria, hypervitaminosis D, and intestinal hyperabsorption of Ca(2+). Moreover, these mice demonstrate upregulation of intestinal TRPV6 and calbindin-D(9K) expression compared with wild-type mice. For addressing the role of the observed hypervitaminosis D in the maintenance of Ca(2+) homeostasis and the regulation of expression levels of the Ca(2+) transport proteins in kidney and intestine, TRPV5/25-hydroxyvitamin-D(3)-1alpha-hydroxylase double knockout (TRPV5(-/-)/1alpha-OHase(-/-)) mice, which show undetectable serum 1,25(OH)(2)D(3) levels, were generated. TRPV5(-/-)/1alpha-OHase(-/-) mice displayed a significant hypocalcemia compared with wild-type mice (1.10 +/- 0.02 and 2.54 +/- 0.01 mM, respectively; P < 0.05). mRNA levels of renal calbindin-D(28K) (7 +/- 2%), calbindin-D(9K) (32 +/- 4%), Na(+)/Ca(2+) exchanger (12 +/- 2%), and intestinal TRPV6 (40 +/- 8%) and calbindin-D(9K) (26 +/- 4%) expression levels were decreased compared with wild-type mice. Hyperparathyroidism and rickets were present in TRPV5(-/-)/1alpha-OHase(-/-) mice, more pronounced than observed in single TRPV5 or 1alpha-OHase knockout mice. It is interesting that a renal Ca(2+) leak, as demonstrated in TRPV5(-/-) mice, persisted in TRPV5(-/-)/1alpha-OHase(-/-) mice, but a compensatory upregulation of intestinal Ca(2+) transporters was abolished. In conclusion, the elevation of serum 1,25(OH)(2)D(3) levels in TRPV5(-/-) mice is responsible for the upregulation of intestinal Ca(2+) transporters and Ca(2+) hyperabsorption. Hypervitaminosis D, therefore, is of crucial importance to maintain normocalcemia in impaired Ca(2+) reabsorption in TRPV5(-/-) mice.
منابع مشابه
Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5.
Ca2+ ions play a fundamental role in many cellular processes, and the extracellular concentration of Ca2+ is kept under strict control to allow the proper physiological functions to take place. The kidney, small intestine, and bone determine the Ca2+ flux to the extracellular Ca2+ pool in a concerted fashion. Transient receptor potential (TRP) cation channel subfamily V, members 5 and 6 (TRPV5 ...
متن کاملThe novel vitamin D analog ZK191784 as an intestine-specific vitamin D antagonist.
Vitamin D [1,25(OH)2D3] plays a crucial role in Ca2+ homeostasis by stimulating Ca2+ (re)absorption and bone turnover. The 1,25(OH)2D3 analog ZK191784 was recently developed to dissociate the therapeutic immunomodulatory activity from the hypercalcemic side effects of 1,25(OH)2D3 and contains a structurally modified side chain characterized by a 22,23-double bond, 24R-hydroxy group, 25-cyclopro...
متن کاملCritical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin-D28K knockout mice.
The epithelial Ca(2+) channel TRPV5 facilitates apical Ca(2+) entry during active Ca(2+) reabsorption in the distal convoluted tubule. In this process, cytosolic Ca(2+) remains at low nontoxic concentrations because the Ca(2+) influx is buffered rapidly by calbindin-D(28K). Subsequently, Ca(2+) that is bound to calbindin-D(28K) is shuttled toward the basolateral Ca(2+) extrusion systems. For ad...
متن کاملAge-dependent alterations in Ca2+ homeostasis: role of TRPV5 and TRPV6.
Aging is associated with alterations in Ca2+ homeostasis, which predisposes elder people to hyperparathyroidism and osteoporosis. Intestinal Ca2+ absorption decreases with aging and, in particular, active transport of Ca2+ by the duodenum. In addition, there are age-related changes in renal Ca2+ handling. To examine age-related changes in expression of the renal and intestinal epithelial Ca2+ c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 16 11 شماره
صفحات -
تاریخ انتشار 2005